Method that calculates which algorithm behaves best for the datasets provided.
evaluate_validation_internal_by_metrics(df)
Arguments
df: data matrix or data frame with the result of running the clustering algorithm.
Returns
A data.frame with all the algorithms that obtain the best results regardless of the dissimilarity measure used.
Details
It groups the results of the execution by algorithms.
Examples
result = Clustering::clustering( df = cluster::agriculture, min =4, max =5, algorithm='kmeans_rcpp', metrics=c("Recall","Silhouette"))Clustering::evaluate_validation_internal_by_metrics(result)Clustering::evaluate_validation_internal_by_metrics(result$result)