execute_datasets function

Evaluation clustering algorithm.

Evaluation clustering algorithm.

Method of performing information processing

execute_datasets( path, df, packages, algorithm, cluster_min, cluster_max, metrics, attributes, name_dataframe )

Arguments

  • path: Path where the datasets are located.
  • df: Data matrix or data frame, or dissimilarity matrix, depending on the value of the argument.
  • packages: Array defining the clustering package. The seven packages implemented are: cluster, ClusterR, amap, apcluster, pvclust. By default runs all packages.
  • algorithm: Array with the algorithms that implement the package. The algorithms implemented are: hclust,apclusterK, agnes,clara,daisy,diana,fanny,mona,pam,gmm,kmeans_arma,kmeans_rcpp, mini_kmeans, pvclust.
  • cluster_min: Minimum number of clusters. at least one must be.
  • cluster_max: Maximum number of clusters. cluster_max must be greater or equal cluster_min.
  • metrics: Array defining the metrics avalaible in the package. The night metrics implemented are: Entropy, Variation_information, Precision, Recall, F_measure, Fowlkes_mallows_index, Connectivity, Dunn and Silhouette.
  • name_dataframe: Name of data.frame when df is fill.

Returns

Returns a matrix with the result of running all the metrics of the algorithms contained in the packages we indicated.