Best_Model function

Find Best Model

Find Best Model

This function will try to find out a significant model for each combinations based on adjusted R^2. Then user need to select which model they want to use.

Best_Model(model, data)

Arguments

  • model: Provide a vector that contains all the individual terms present in a full model
  • data: Provide data in a matrix or data frame format where you want to fit the model

Returns

Generate a list of significant models for various combinations of factors.

Author(s)

Ashutosh Dalal, Cini Varghese, Rajender Parsad and Mohd Harun

Examples

## Not run: library(CompExpDes) # Sample data data <- data.frame( x1 = c(1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, 3.8, 4.2, 4.6, 5.0, 5.4), x2 = c(50, 25, 5, 30, 55, 45, 20, 10, 35, 60, 40, 15), x3 = c(2.5, 6.0, 4.0, 1.0, 5.5, 4.5, 3.0, 2.0, 6.5, 3.5, 1.5, 5.0), x4 = c(45, 25, 55, 35, 65, 15, 70, 20, 50, 30, 60, 40), y = c(0.0795, 0.0118, 0.0109, 0.0991, 0.1266, 0.0717, 0.1319, 0.0900, 0.1739, 0.1176, 0.1836, 0.1424) ) # List of terms in the polynomial model model <- list('x1', 'x2', 'x3', 'x4', 'x1:x2', 'x1:x3', 'x1:x4', 'x2:x3', 'x2:x4', 'x3:x4', 'I(x1^2)', 'I(x2^2)', 'I(x3^2)', 'I(x4^2)') Best_Model(model,data) ## End(Not run)
  • Maintainer: Ashutosh Dalal
  • License: GPL (>= 2)
  • Last published: 2025-03-29

Useful links