ci_bod function

Benefit of the Doubt approach (BoD)

Benefit of the Doubt approach (BoD)

Benefit of the Doubt approach (BoD) is the application of Data Envelopment Analysis (DEA) to the field of composite indicators. It was originally proposed by Melyn and Moesen (1991) to evaluate macroeconomic performance.

ci_bod(x,indic_col)

Arguments

  • x: A data.frame containing simple indicators.
  • indic_col: A numeric list indicating the positions of the simple indicators.

Returns

An object of class "CI". This is a list containing the following elements: - ci_bod_est: Composite indicator estimated values.

  • ci_method: Method used; for this function ci_method="bod".

  • ci_bod_weights: Raw weights assigned to the simple indicators (Dual values - prices - in the dual DEA formulation).

References

OECD (2008) "Handbook on constructing composite indicators: methodology and user guide".

Melyn W. and Moesen W.W. (1991) "Towards a synthetic indicator of macroeconomic performance: unequal weighting when limited information is available", Public Economic research Paper 17, CES, KU Leuven.

Witte, K. D., Rogge, N. (2009) "Accounting for exogenous influences in a benevolent performance evaluation of teachers". Tech. rept. Working Paper Series ces0913, Katholieke Universiteit Leuven, Centrum voor Economische Studien.

Author(s)

Vidoli F.

See Also

ci_bod_dir,ci_rbod

Examples

i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03) i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03) Indic = data.frame(i1, i2) CI = ci_bod(Indic) # validating BoD score w = CI$ci_bod_weights Indic[,1]*w[,1] + Indic[,2]*w[,2] data(EU_NUTS1) data_norm = normalise_ci(EU_NUTS1,c(2:3),polarity = c("POS","POS"), method=2) CI = ci_bod(data_norm$ci_norm,c(1:2))
  • Maintainer: Francesco Vidoli
  • License: GPL-3
  • Last published: 2025-01-09

Useful links