Mazziotta-Pareto Index (MPI) is a non-linear composite index method which transforms a set of individual indicators in standardized variables and summarizes them using an arithmetic mean adjusted by a "penalty" coefficient related to the variability of each unit (method of the coefficient of variation penalty).
ci_mpi(x, indic_col, penalty="POS")
Arguments
x: A data.frame containing simple indicators.
indic_col: Simple indicators column number.
penalty: Penalty direction; Use "POS" (default) in case of 'increasing' or 'positive' composite index (e.g., well-being index)), "NEG" in case of 'decreasing' or 'negative' composite index (e.g., poverty index).
Returns
An object of class "CI". This is a list containing the following elements: - ci_mpi_est: Composite indicator estimated values.
ci_method: Method used; for this function ci_method="mpi".
References
De Muro P., Mazziotta M., Pareto A. (2011), "Composite Indices of Development and Poverty: An Application to MDGs", Social Indicators Research, Volume 104, Number 1, pp. 1-18.
Author(s)
Vidoli F.
See Also
ci_bod, normalise_ci
Examples
data(EU_NUTS1)# Please, pay attention. MPI can be calculated only with two standardizations methods:# Classic MPI - method=1, z.mean=100 and z.std=10# Correct MPI - method=2# For more info, please see references.data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=1,z.mean=100, z.std=10)CI = ci_mpi(data_norm$ci_norm, penalty="NEG")data(EU_NUTS1)CI = ci_mpi(EU_NUTS1,c(2:3),penalty="NEG")