ci_mpi function

Mazziotta-Pareto Index (MPI) method

Mazziotta-Pareto Index (MPI) method

Mazziotta-Pareto Index (MPI) is a non-linear composite index method which transforms a set of individual indicators in standardized variables and summarizes them using an arithmetic mean adjusted by a "penalty" coefficient related to the variability of each unit (method of the coefficient of variation penalty).

ci_mpi(x, indic_col, penalty="POS")

Arguments

  • x: A data.frame containing simple indicators.
  • indic_col: Simple indicators column number.
  • penalty: Penalty direction; Use "POS" (default) in case of 'increasing' or 'positive' composite index (e.g., well-being index)), "NEG" in case of 'decreasing' or 'negative' composite index (e.g., poverty index).

Returns

An object of class "CI". This is a list containing the following elements: - ci_mpi_est: Composite indicator estimated values.

  • ci_method: Method used; for this function ci_method="mpi".

References

De Muro P., Mazziotta M., Pareto A. (2011), "Composite Indices of Development and Poverty: An Application to MDGs", Social Indicators Research, Volume 104, Number 1, pp. 1-18.

Author(s)

Vidoli F.

See Also

ci_bod, normalise_ci

Examples

data(EU_NUTS1) # Please, pay attention. MPI can be calculated only with two standardizations methods: # Classic MPI - method=1, z.mean=100 and z.std=10 # Correct MPI - method=2 # For more info, please see references. data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=1,z.mean=100, z.std=10) CI = ci_mpi(data_norm$ci_norm, penalty="NEG") data(EU_NUTS1) CI = ci_mpi(EU_NUTS1,c(2:3),penalty="NEG")
  • Maintainer: Francesco Vidoli
  • License: GPL-3
  • Last published: 2025-01-09

Useful links