ci_wroclaw function

Wroclaw Taxonomic Method

Wroclaw Taxonomic Method

Wroclaw taxonomy method (also known as the dendric method), originally developed at the University of Wroclaw, is based on the distance from a theoretical unit characterized by the best performance for all indicators considered; the composite indicator is therefore based on the sum of euclidean distances from the ideal unit and normalized by a measure of variability of these distance (mean + 2*std).

ci_wroclaw(x,indic_col)

Arguments

  • x: A data.frame containing simple indicators.
  • indic_col: Simple indicators column number.

Returns

An object of class "CI". This is a list containing the following elements: - ci_wroclaw_est: Composite indicator estimated values.

  • ci_method: Method used; for this function ci_method="wroclaw".

Details

Please pay attention that ci_wroclaw_est is the distance from the "ideal" unit; so, units with higher values for the simple indicators get lower values of composite indicator.

References

UNESCO, "Social indicators: problems of definition and of selection", Paris 1974.

Mazziotta C., Mazziotta M., Pareto A., Vidoli F., "La sintesi di indicatori territoriali di dotazione infrastrutturale: metodi di costruzione e procedure di ponderazione a confronto", Rivista di Economia e Statistica del territorio, n.1, 2010.

Author(s)

Vidoli F.

See Also

ci_bod, ci_mpi

Examples

i1 <- seq(0.3, 0.5, len = 100) - rnorm (100, 0.2, 0.03) i2 <- seq(0.3, 1, len = 100) - rnorm (100, 0.2, 0.03) Indic = data.frame(i1, i2) CI = ci_wroclaw(Indic) data(EU_NUTS1) CI = ci_wroclaw(EU_NUTS1,c(2:3)) data(EU_2020) data_selez = EU_2020[,c(1,22,191)] data_norm = normalise_ci(data_selez,c(2:3),c("POS","NEG"),method=3) ci_wroclaw(data_norm$ci_norm,c(1:2))
  • Maintainer: Francesco Vidoli
  • License: GPL-3
  • Last published: 2025-01-09

Useful links