1 (default) = standardization or z-scores using the following formulation:
zij=z.mean±Sxjxij−Mxj⋅z.std
where ± depends on polarity parameter and z.mean and z.std represent the shifting parameters.
* 2 = Min-max method using the following formulation:
if **polarity**="POS":
max(x)−min(x)x−min(x)
if **polarity**="NEG":
max(x)−min(x)max(x)−x
* 3 = Ranking method. If **polarity**="POS" ranking is increasing, while if **polarity**="NEG" ranking is decreasing.
polarity: Polarity vector: "POS" = positive, "NEG" = negative. The polarity of a individual indicator is the sign of the relationship between the indicator and the phenomenon to be measured (e.g., in a well-being index, "GDP per capita" has 'positive' polarity and "Unemployment rate" has 'negative' polarity).
z.mean: If method=1, Average shifting parameter. Default is 0.
z.std: If method=1, Standard deviation expansion parameter. Default is 1.
ties.method: If method=3, A character string specifying how ties are treated, see rank for details. Default is "average".
Returns
ci_norm: A data.frame containing normalised score of the choosen simple indicators.
norm_method: Normalisation method used.
References
OECD, "Handbook on constructing composite indicators: methodology and user guide", 2008, pag.30.
Author(s)
Vidoli F.
See Also
ci_bod, ci_mpi
Examples
data(EU_NUTS1)# Standard z-scores normalisation #data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=1,z.mean=0, z.std=1)summary(data_norm$ci_norm)# Normalisation for MPI index #data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=1,z.mean=100, z.std=10)summary(data_norm$ci_norm)data_norm = normalise_ci(EU_NUTS1,c(2:3),c("NEG","POS"),method=2)summary(data_norm$ci_norm)