Y: An n-dimensional vector or a matrix or dataframe with n rows and p columns.
E: An n-dimensional vector or a matrix or dataframe with n rows and p columns.
X: An n-dimensional vector or a matrix or dataframe with n rows and p columns.
method: The conditional indepdence test to use, can be one of "KCI", "InvariantConditionalQuantilePrediction", "InvariantEnvironmentPrediction", "InvariantResidualDistributionTest", "InvariantTargetPrediction", "ResidualPredictionTest".
alpha: Significance level. Defaults to 0.05.
parsMethod: Named list to pass options to method.
verbose: If TRUE, intermediate output is provided. Defaults to FALSE.
Returns
A list with the p-value of the test (pvalue) and possibly additional entries, depending on the output of the chosen conditional independence test in method.
Examples
# Example 1set.seed(1)n <-100Z <- rnorm(n)X <-4+2* Z + rnorm(n)Y <-3* X^2+ Z + rnorm(n)test1 <- CondIndTest(X,Y,Z, method ="KCI")cat("These data come from a distribution,for which X and Y are NOT
cond. ind. given Z.")cat(paste("The p-value of the test is: ", test1$pvalue))# Example 2set.seed(1)Z <- rnorm(n)X <-4+2* Z + rnorm(n)Y <-3+ Z + rnorm(n)test2 <- CondIndTest(X,Y,Z, method ="KCI")cat("The data come from a distribution,for which X and Y are cond.
ind. given Z.")cat(paste("The p-value of the test is: ", test2$pvalue))
References
Please cite C. Heinze-Deml, J. Peters and N. Meinshausen: "Invariant Causal Prediction for Nonlinear Models", arXiv:1706.08576
and the corresponding reference for the conditional independence test.