Invariant conditional quantile prediction.
Tests the null hypothesis that Y and E are independent given X.
InvariantConditionalQuantilePrediction(Y, E, X, alpha = 0.05, verbose = FALSE, test = fishersTestExceedance, mtry = sqrt(NCOL(X)), ntree = 100, nodesize = 5, maxnodes = NULL, quantiles = c(0.1, 0.5, 0.9), returnModel = FALSE)
Y
: An n-dimensional vector.E
: An n-dimensional vector. If test = fishersTestExceedance
, E needs to be a factor.X
: A matrix or dataframe with n rows and p columns.alpha
: Significance level. Defaults to 0.05.verbose
: If TRUE
, intermediate output is provided. Defaults to FALSE
.test
: Unconditional independence test that tests whether exceedence is independent of E. Defaults to fishersTestExceedance
.mtry
: Random forest parameter: Number of variables randomly sampled as candidates at each split. Defaults to sqrt(NCOL(X))
.ntree
: Random forest parameter: Number of trees to grow. Defaults to 100.nodesize
: Random forest parameter: Minimum size of terminal nodes. Defaults to 5.maxnodes
: Random forest parameter: Maximum number of terminal nodes trees in the forest can have. Defaults to NULL.quantiles
: Quantiles for which to test independence between exceedence and E. Defaults to c(0.1, 0.5, 0.9)
.returnModel
: If TRUE
, the fitted quantile regression forest model will be returned. Defaults to FALSE
.A list with the following entries:
pvalue
The p-value for the null hypothesis that Y and E are independent given X.model
The fitted quantile regression forest model if returnModel = TRUE
.# Example 1 n <- 1000 E <- rbinom(n, size = 1, prob = 0.2) X <- 4 + 2 * E + rnorm(n) Y <- 3 * (X)^2 + rnorm(n) InvariantConditionalQuantilePrediction(Y, as.factor(E), X) # Example 2 E <- rbinom(n, size = 1, prob = 0.2) X <- 4 + 2 * E + rnorm(n) Y <- 3 * E + rnorm(n) InvariantConditionalQuantilePrediction(Y, as.factor(E), X)
Useful links