GARCHselection function

Univariate GARCH selection criterion

Univariate GARCH selection criterion

This function estimates and evaluates a combination of GARCH models with different distributions and suggests the best GARCH models among all alternatives given some test statistics

GARCHselection( x, distributions = c("norm", "snorm", "std", "sstd", "ged", "sged"), models = c("sGARCH", "eGARCH", "gjrGARCH", "iGARCH", "TGARCH", "AVGARCH", "NGARCH", "NAGARCH", "APARCH", "ALLGARCH"), prob = 0.05, conf.level = 0.9, lag = 20, ar = 0, ma = 0 )

Arguments

  • x: zoo data matrix
  • distributions: Vector of distributions
  • models: Vector of GARCH models
  • prob: The quantile (coverage) used for the VaR.
  • conf.level: Confidence level of VaR test statistics
  • lag: Lag length of weighted Portmanteau statistics
  • ar: AR(p)
  • ma: MA(q)

Returns

Get optimal univariate GARCH model specification

References

Ghalanos, A. (2014). rugarch: Univariate GARCH models, R package version 1.3-3.

Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2021). The impact of Euro through time: Exchange rate dynamics under different regimes. International Journal of Finance & Economics, 26(1), 1375-1408.

Author(s)

David Gabauer

  • Maintainer: David Gabauer
  • License: GPL-3
  • Last published: 2025-03-01

Useful links