EstDiscrete function

Copula-based estimation of mixed regression models for discrete response

Copula-based estimation of mixed regression models for discrete response

This function computes the estimation of a copula-based 2-level hierarchical model.

EstDiscrete( y, model, family, rot = 0, clu, xc = NULL, xm = NULL, start, LB, UB, nq = 25, dfC = NULL, offset = NULL, prediction = TRUE )

Arguments

  • y: n x 1 vector of response variable (assumed continuous).
  • model: margins: "binomial" or "bernoulli","poisson", "nbinom" (Negative Binomial), "geometric", "multinomial".
  • family: copula family: "gaussian" , "t" , "clayton" , "frank" , "fgm", gumbel".
  • rot: rotation: 0 (default), 90, 180 (survival), or 270
  • clu: variable of size n defining the clusters; can be a factor
  • xc: covariates of size n for the estimation of the copula, in addition to the constant; default is NULL.
  • xm: covariates of size n for the estimation of the mean of the margin, in addition to the constant; default is NULL.
  • start: starting point for the estimation; could be the ones associated with a Gaussian-copula model defined by lmer.
  • LB: lower bound for the parameters.
  • UB: upper bound for the parameters.
  • nq: number of nodes and weighted for Gaussian quadrature of the product of conditional copulas; default is 25.
  • dfC: degrees of freedom for a Student margin; default is 0.
  • offset: offset (default is NULL)
  • prediction: logical variable for prediction of latent variables V (default is TRUE).

Returns

  • coefficients: Estimated parameters

  • sd: Standard deviations of the estimated parameters

  • tstat: T statistics for the estimated parameters

  • pval: P-values of the t statistics for the estimated parameters

  • gradient: Gradient of the log-likelihood

  • loglik: Log-likelihood

  • aic: AIC coefficient

  • bic: BIC coefficient

  • cov: Covariance matrix of the estimations

  • grd: Gradients by clusters

  • clu: Cluster values

  • Matxc: Matrix of covariates defining the copula parameters, including a constant

  • Matxm: Matrix of covariates defining the margin parameters, including a constant

  • V: Estimated value of the latent variable by clusters (if prediction=TRUE)

  • cluster: Unique clusters

  • family: Copula family

  • thC0: Estimated parameters of the copula by observation

  • thF: Estimated parameters of the margins by observation

  • rot: rotation

  • dfC: Degrees of freedom for the Student copula

  • model: Name of the margins

  • disc: Discrete margin number

Examples

data(sim.poisson) #simulated data with Poisson margins start=c(2,8,3,-1); LB = c(-3, 3, -7, -6);UB=c( 7, 13, 13, 4) y=sim.poisson$y; clu=sim.poisson$clu; xc=sim.poisson$xc; xm=sim.poisson$xm model = "poisson"; family="frank" out.poisson=EstDiscrete(y,model,family,rot=0,clu,xc,xm,start,LB,UB,nq=31,prediction=TRUE)

References

Krupskii, Nasri & Remillard (2023). On factor copula-based mixed regression models

Author(s)

Pavel Krupskii, Bouchra R. Nasri and Bruno N. Remillard

  • Maintainer: Bruno N Remillard
  • License: GPL (>= 2)
  • Last published: 2023-11-30

Useful links