rot: rotation: 0 (default), 90, 180 (survival), or 270
clu: variable of size n defining the clusters; can be a factor
xc: covariates of size n for the estimation of the copula, in addition to the constant; default is NULL.
xm: covariates of size n for the estimation of the mean of the margin, in addition to the constant; default is NULL.
start: starting point for the estimation; could be the ones associated with a Gaussian-copula model defined by lmer.
LB: lower bound for the parameters.
UB: upper bound for the parameters.
nq: number of nodes and weighted for Gaussian quadrature of the product of conditional copulas; default is 25.
dfC: degrees of freedom for a Student margin; default is 0.
offset: offset (default is NULL)
prediction: logical variable for prediction of latent variables V (default is TRUE).
Returns
coefficients: Estimated parameters
sd: Standard deviations of the estimated parameters
tstat: T statistics for the estimated parameters
pval: P-values of the t statistics for the estimated parameters
gradient: Gradient of the log-likelihood
loglik: Log-likelihood
aic: AIC coefficient
bic: BIC coefficient
cov: Covariance matrix of the estimations
grd: Gradients by clusters
clu: Cluster values
Matxc: Matrix of covariates defining the copula parameters, including a constant
Matxm: Matrix of covariates defining the margin parameters, including a constant
V: Estimated value of the latent variable by clusters (if prediction=TRUE)
cluster: Unique clusters
family: Copula family
thC0: Estimated parameters of the copula by observation
thF: Estimated parameters of the margins by observation
rot: rotation
dfC: Degrees of freedom for the Student copula
model: Name of the margins
disc: Discrete margin number
Examples
data(sim.poisson)#simulated data with Poisson marginsstart=c(2,8,3,-1); LB = c(-3,3,-7,-6);UB=c(7,13,13,4)y=sim.poisson$y; clu=sim.poisson$clu;xc=sim.poisson$xc; xm=sim.poisson$xm
model ="poisson"; family="frank"out.poisson=EstDiscrete(y,model,family,rot=0,clu,xc,xm,start,LB,UB,nq=31,prediction=TRUE)