Estimation of latent variables in the continuous case
This function computes the estimation of a latent variables for each cluster using the conditional a posteriori median.
MAP.continuous(u, family, rot, thC0k, dfC = NULL, nq = 35)
u
: vector of values in (0,1)family
: copula family: "gaussian" , "t" , "clayton" , "joe", "frank" , "fgm", gumbel", "plackett", "galambos", "huesler-reiss"rot
: rotation: 0 (default), 90, 180 (survival), or 270.thC0k
: vector of copula parametersdfC
: degrees of freedom for the Student copula (default is NULL)nq
: number of nodes and weighted for Gaussian quadrature of the product of conditional copulas; default is 31.u = c(0.5228155, 0.3064417, 0.2789849, 0.5176489, 0.3587144) thC0k=rep(17.54873,5) MAP.continuous(u,"clayton",rot=90,thC0k,nq=35)
Krupskii, Nasri & Remillard (2023). On factor copula-based mixed regression models
Pavel Krupskii, Bouchra R. Nasri and Bruno N. Remillard
Useful links