SimGenCluster function

Simulation of clustered data

Simulation of clustered data

Generate a random sample of observations from a copula-based mixed regression model.

SimGenCluster( parC, parM, clu, xc = NULL, xm = NULL, family, rot = 0, dfC = NULL, model, dfM = NULL, offset = NULL )

Arguments

  • parC: vector of copula parameters; k1 is the number of covariates + constant for the copula
  • parM: vector of margin parameters; k2 is the number of covariates + constant for the margins
  • clu: vector of clusters (can be a factor)
  • xc: matrix (N x k1) of covariates for the copula, not including the constant (can be NULL)
  • xm: matrix (N x k2) of covariates for the margins, not including the constant (can be NULL)
  • family: copula family: "gaussian" , "t" , "clayton" , "joe", "frank" , "gumbel", "plackett"
  • rot: rotation: 0 (default), 90, 180 (survival), or 270
  • dfC: degrees of freedom for the Student copula (default is NULL)
  • model: marginal distribution: "binomial" (bernoulli), "poisson", "nbinom" (mean is the parameter),"nbinom1" (p is the parameter), "geometric", "multinomial", exponential", "weibull", "normal" (gaussian),"t", "laplace"
  • dfM: degrees of freedom for the Student margins (default is NULL)
  • offset: offset for the margins (default is NULL)

Returns

  • y: Simulated response

  • y: Simulated values

Examples

K=50 #number of clusters n=5 #size of each cluster N=n*K set.seed(1) clu=rep(c(1:K),each=n) parC = 0 # yields tau = 0.5 for Clayton parM= c(1,-1,4) xm = runif(N) y=SimGenCluster(parC,parM,xm,family="clayton",rot=90,clu=clu,model="gaussian")

Author(s)

Bruno N. Remillard

  • Maintainer: Bruno N Remillard
  • License: GPL (>= 2)
  • Last published: 2023-11-30

Useful links