This function performs model diagnostic of residuals. Residuals are calculated and plotted against predictions, true y values or selected variables. Find information how to use this function here: https://ema.drwhy.ai/residualDiagnostic.html.
model_diagnostics(explainer, variables =NULL,...)
Arguments
explainer: a model to be explained, preprocessed by the explain function
variables: character - name of variables to be explained. Default NULL stands for all variables
...: other parameters
Returns
An object of the class model_diagnostics. It's a data frame with residuals and selected variables.
Examples
library(DALEX)apartments_lm_model <- lm(m2.price ~ ., data = apartments)explainer_lm <- explain(apartments_lm_model, data = apartments, y = apartments$m2.price)diag_lm <- model_diagnostics(explainer_lm)diag_lm
plot(diag_lm)library("ranger")apartments_ranger_model <- ranger(m2.price ~ ., data = apartments)explainer_ranger <- explain(apartments_ranger_model, data = apartments, y = apartments$m2.price)diag_ranger <- model_diagnostics(explainer_ranger)diag_ranger
plot(diag_ranger)plot(diag_ranger, diag_lm)plot(diag_ranger, diag_lm, variable ="y")plot(diag_ranger, diag_lm, variable ="construction.year")plot(diag_ranger, variable ="y", yvariable ="y_hat")plot(diag_ranger, variable ="y", yvariable ="abs_residuals")plot(diag_ranger, variable ="ids")
References
Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai/