model_diagnostics function

Dataset Level Model Diagnostics

Dataset Level Model Diagnostics

This function performs model diagnostic of residuals. Residuals are calculated and plotted against predictions, true y values or selected variables. Find information how to use this function here: https://ema.drwhy.ai/residualDiagnostic.html.

model_diagnostics(explainer, variables = NULL, ...)

Arguments

  • explainer: a model to be explained, preprocessed by the explain function
  • variables: character - name of variables to be explained. Default NULL stands for all variables
  • ...: other parameters

Returns

An object of the class model_diagnostics. It's a data frame with residuals and selected variables.

Examples

library(DALEX) apartments_lm_model <- lm(m2.price ~ ., data = apartments) explainer_lm <- explain(apartments_lm_model, data = apartments, y = apartments$m2.price) diag_lm <- model_diagnostics(explainer_lm) diag_lm plot(diag_lm) library("ranger") apartments_ranger_model <- ranger(m2.price ~ ., data = apartments) explainer_ranger <- explain(apartments_ranger_model, data = apartments, y = apartments$m2.price) diag_ranger <- model_diagnostics(explainer_ranger) diag_ranger plot(diag_ranger) plot(diag_ranger, diag_lm) plot(diag_ranger, diag_lm, variable = "y") plot(diag_ranger, diag_lm, variable = "construction.year") plot(diag_ranger, variable = "y", yvariable = "y_hat") plot(diag_ranger, variable = "y", yvariable = "abs_residuals") plot(diag_ranger, variable = "ids")

References

Explanatory Model Analysis. Explore, Explain and Examine Predictive Models. https://ema.drwhy.ai/