model_info function

Exract info from model

Exract info from model

This generic function let user extract base information about model. The function returns a named list of class model_info that contain about package of model, version and task type. For wrappers like mlr or caret both, package and wrapper inforamtion are stored

model_info(model, is_multiclass = FALSE, ...) ## S3 method for class 'lm' model_info(model, is_multiclass = FALSE, ...) ## S3 method for class 'randomForest' model_info(model, is_multiclass = FALSE, ...) ## S3 method for class 'svm' model_info(model, is_multiclass = FALSE, ...) ## S3 method for class 'glm' model_info(model, is_multiclass = FALSE, ...) ## S3 method for class 'lrm' model_info(model, is_multiclass = FALSE, ...) ## S3 method for class 'glmnet' model_info(model, is_multiclass = FALSE, ...) ## S3 method for class 'cv.glmnet' model_info(model, is_multiclass = FALSE, ...) ## S3 method for class 'ranger' model_info(model, is_multiclass = FALSE, ...) ## S3 method for class 'gbm' model_info(model, is_multiclass = FALSE, ...) ## S3 method for class 'model_fit' model_info(model, is_multiclass = FALSE, ...) ## S3 method for class 'train' model_info(model, is_multiclass = FALSE, ...) ## S3 method for class 'rpart' model_info(model, is_multiclass = FALSE, ...) ## Default S3 method: model_info(model, is_multiclass = FALSE, ...)

Arguments

  • model: - model object

  • is_multiclass: - if TRUE and task is classification, then multitask classification is set. Else is omitted. If model_info

    was executed withing explain function. DALEX will recognize subtype on it's own.

  • ...: - another arguments

Returns

A named list of class model_info

Details

Currently supported packages are:

  • class cv.glmnet and glmnet - models created with glmnet package
  • class glm - generalized linear models
  • class lrm - models created with rms package,
  • class model_fit - models created with parsnip package
  • class lm - linear models created with stats::lm
  • class ranger - models created with ranger package
  • class randomForest - random forest models created with randomForest package
  • class svm - support vector machines models created with the e1071 package
  • class train - models created with caret package
  • class gbm - models created with gbm package

Examples

aps_lm_model4 <- lm(m2.price ~., data = apartments) model_info(aps_lm_model4) library("ranger") model_regr_rf <- ranger::ranger(status~., data = HR, num.trees = 50, probability = TRUE) model_info(model_regr_rf, is_multiclass = TRUE)