This generic function let user extract base information about model. The function returns a named list of class model_info that contain about package of model, version and task type. For wrappers like mlr or caret both, package and wrapper inforamtion are stored
model_info(model, is_multiclass =FALSE,...)## S3 method for class 'lm'model_info(model, is_multiclass =FALSE,...)## S3 method for class 'randomForest'model_info(model, is_multiclass =FALSE,...)## S3 method for class 'svm'model_info(model, is_multiclass =FALSE,...)## S3 method for class 'glm'model_info(model, is_multiclass =FALSE,...)## S3 method for class 'lrm'model_info(model, is_multiclass =FALSE,...)## S3 method for class 'glmnet'model_info(model, is_multiclass =FALSE,...)## S3 method for class 'cv.glmnet'model_info(model, is_multiclass =FALSE,...)## S3 method for class 'ranger'model_info(model, is_multiclass =FALSE,...)## S3 method for class 'gbm'model_info(model, is_multiclass =FALSE,...)## S3 method for class 'model_fit'model_info(model, is_multiclass =FALSE,...)## S3 method for class 'train'model_info(model, is_multiclass =FALSE,...)## S3 method for class 'rpart'model_info(model, is_multiclass =FALSE,...)## Default S3 method:model_info(model, is_multiclass =FALSE,...)
Arguments
model: - model object
is_multiclass: - if TRUE and task is classification, then multitask classification is set. Else is omitted. If model_info
was executed withing explain function. DALEX will recognize subtype on it's own.
...: - another arguments
Returns
A named list of class model_info
Details
Currently supported packages are:
class cv.glmnet and glmnet - models created with glmnet package
class glm - generalized linear models
class lrm - models created with rms package,
class model_fit - models created with parsnip package
class lm - linear models created with stats::lm
class ranger - models created with ranger package
class randomForest - random forest models created with randomForest package
class svm - support vector machines models created with the e1071 package
class train - models created with caret package
class gbm - models created with gbm package
Examples
aps_lm_model4 <- lm(m2.price ~., data = apartments)model_info(aps_lm_model4)library("ranger")model_regr_rf <- ranger::ranger(status~., data = HR, num.trees =50, probability =TRUE)model_info(model_regr_rf, is_multiclass =TRUE)