Dataset Level Variable Profile as Partial Dependence or Accumulated Local Dependence Explanations
Dataset Level Variable Profile as Partial Dependence or Accumulated Local Dependence Explanations
This function calculates explanations on a dataset level set that explore model response as a function of selected variables. The explanations can be calulated as Partial Dependence Profile or Accumulated Local Dependence Profile. Find information how to use this function here: https://ema.drwhy.ai/partialDependenceProfiles.html. The variable_profile function is a copy of model_profile.
model_profile( explainer, variables =NULL, N =100,..., groups =NULL, k =NULL, center =TRUE, type ="partial")variable_profile( explainer, variables =NULL, N =100,..., groups =NULL, k =NULL, center =TRUE, type ="partial")single_variable(explainer, variable, type ="pdp",...)
Arguments
explainer: a model to be explained, preprocessed by the explain function
variables: character - names of variables to be explained
N: number of observations used for calculation of aggregated profiles. By default 100. Use NULL to use all observations.
...: other parameters that will be passed to ingredients::aggregate_profiles
groups: a variable name that will be used for grouping. By default NULL which means that no groups shall be calculated
k: number of clusters for the hclust function (for clustered profiles)
center: shall profiles be centered before clustering
type: the type of variable profile. Either partial, conditional or accumulated.
variable: deprecated, use variables instead
Returns
An object of the class model_profile. It's a data frame with calculated average model responses.
Details
Underneath this function calls the partial_dependence or accumulated_dependence functions from the ingredients package.
Examples
titanic_glm_model <- glm(survived~., data = titanic_imputed, family ="binomial")explainer_glm <- explain(titanic_glm_model, data = titanic_imputed)model_profile_glm_fare <- model_profile(explainer_glm,"fare")plot(model_profile_glm_fare)library("ranger")titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees =50, probability =TRUE)explainer_ranger <- explain(titanic_ranger_model, data = titanic_imputed)model_profile_ranger <- model_profile(explainer_ranger)plot(model_profile_ranger, geom ="profiles")model_profile_ranger_1 <- model_profile(explainer_ranger, type ="partial", variables = c("age","fare"))plot(model_profile_ranger_1 , variables = c("age","fare"), geom ="points")model_profile_ranger_2 <- model_profile(explainer_ranger, type ="partial", k =3)plot(model_profile_ranger_2 , geom ="profiles")model_profile_ranger_3 <- model_profile(explainer_ranger, type ="partial", groups ="gender")plot(model_profile_ranger_3 , geom ="profiles")model_profile_ranger_4 <- model_profile(explainer_ranger, type ="accumulated")plot(model_profile_ranger_4 , geom ="profiles")# Multiple profilesmodel_profile_ranger_fare <- model_profile(explainer_ranger,"fare")plot(model_profile_ranger_fare, model_profile_glm_fare)
References
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/