## S3 method for class 'model_performance'plot( x,..., geom ="ecdf", show_outliers =0, ptlabel ="name", lossFunction = loss_function, loss_function =function(x) sqrt(mean(x^2)))
Arguments
x: a model to be explained, preprocessed by the explain function
...: other parameters
geom: either "prc", "roc", "ecdf", "boxplot", "gain", "lift" or "histogram" determines how residuals shall be summarized
show_outliers: number of largest residuals to be presented (only when geom = boxplot).
ptlabel: either "name" or "index" determines the naming convention of the outliers
lossFunction: alias for loss_function held for backwards compatibility.
loss_function: function that calculates the loss for a model based on model residuals. By default it's the root mean square. NOTE that this argument was called lossFunction.
Returns
An object of the class model_performance.
Examples
library("ranger")titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees =50, probability =TRUE)explainer_ranger <- explain(titanic_ranger_model, data = titanic_imputed[,-8], y = titanic_imputed$survived)mp_ranger <- model_performance(explainer_ranger)plot(mp_ranger)plot(mp_ranger, geom ="boxplot", show_outliers =1)titanic_ranger_model2 <- ranger(survived~gender + fare, data = titanic_imputed, num.trees =50, probability =TRUE)explainer_ranger2 <- explain(titanic_ranger_model2, data = titanic_imputed[,-8], y = titanic_imputed$survived, label ="ranger2")mp_ranger2 <- model_performance(explainer_ranger2)plot(mp_ranger, mp_ranger2, geom ="prc")plot(mp_ranger, mp_ranger2, geom ="roc")plot(mp_ranger, mp_ranger2, geom ="lift")plot(mp_ranger, mp_ranger2, geom ="gain")plot(mp_ranger, mp_ranger2, geom ="boxplot")plot(mp_ranger, mp_ranger2, geom ="histogram")plot(mp_ranger, mp_ranger2, geom ="ecdf")titanic_glm_model <- glm(survived~., data = titanic_imputed, family ="binomial")explainer_glm <- explain(titanic_glm_model, data = titanic_imputed[,-8], y = titanic_imputed$survived, label ="glm", predict_function =function(m,x) predict.glm(m,x,type ="response"))mp_glm <- model_performance(explainer_glm)plot(mp_glm)titanic_lm_model <- lm(survived~., data = titanic_imputed)explainer_lm <- explain(titanic_lm_model, data = titanic_imputed[,-8], y = titanic_imputed$survived, label ="lm")mp_lm <- model_performance(explainer_lm)plot(mp_lm)plot(mp_ranger, mp_glm, mp_lm)plot(mp_ranger, mp_glm, mp_lm, geom ="boxplot")plot(mp_ranger, mp_glm, mp_lm, geom ="boxplot", show_outliers =1)