plot.model_performance function

Plot Dataset Level Model Performance Explanations

Plot Dataset Level Model Performance Explanations

## S3 method for class 'model_performance' plot( x, ..., geom = "ecdf", show_outliers = 0, ptlabel = "name", lossFunction = loss_function, loss_function = function(x) sqrt(mean(x^2)) )

Arguments

  • x: a model to be explained, preprocessed by the explain function
  • ...: other parameters
  • geom: either "prc", "roc", "ecdf", "boxplot", "gain", "lift" or "histogram" determines how residuals shall be summarized
  • show_outliers: number of largest residuals to be presented (only when geom = boxplot).
  • ptlabel: either "name" or "index" determines the naming convention of the outliers
  • lossFunction: alias for loss_function held for backwards compatibility.
  • loss_function: function that calculates the loss for a model based on model residuals. By default it's the root mean square. NOTE that this argument was called lossFunction.

Returns

An object of the class model_performance.

Examples

library("ranger") titanic_ranger_model <- ranger(survived~., data = titanic_imputed, num.trees = 50, probability = TRUE) explainer_ranger <- explain(titanic_ranger_model, data = titanic_imputed[,-8], y = titanic_imputed$survived) mp_ranger <- model_performance(explainer_ranger) plot(mp_ranger) plot(mp_ranger, geom = "boxplot", show_outliers = 1) titanic_ranger_model2 <- ranger(survived~gender + fare, data = titanic_imputed, num.trees = 50, probability = TRUE) explainer_ranger2 <- explain(titanic_ranger_model2, data = titanic_imputed[,-8], y = titanic_imputed$survived, label = "ranger2") mp_ranger2 <- model_performance(explainer_ranger2) plot(mp_ranger, mp_ranger2, geom = "prc") plot(mp_ranger, mp_ranger2, geom = "roc") plot(mp_ranger, mp_ranger2, geom = "lift") plot(mp_ranger, mp_ranger2, geom = "gain") plot(mp_ranger, mp_ranger2, geom = "boxplot") plot(mp_ranger, mp_ranger2, geom = "histogram") plot(mp_ranger, mp_ranger2, geom = "ecdf") titanic_glm_model <- glm(survived~., data = titanic_imputed, family = "binomial") explainer_glm <- explain(titanic_glm_model, data = titanic_imputed[,-8], y = titanic_imputed$survived, label = "glm", predict_function = function(m,x) predict.glm(m,x,type = "response")) mp_glm <- model_performance(explainer_glm) plot(mp_glm) titanic_lm_model <- lm(survived~., data = titanic_imputed) explainer_lm <- explain(titanic_lm_model, data = titanic_imputed[,-8], y = titanic_imputed$survived, label = "lm") mp_lm <- model_performance(explainer_lm) plot(mp_lm) plot(mp_ranger, mp_glm, mp_lm) plot(mp_ranger, mp_glm, mp_lm, geom = "boxplot") plot(mp_ranger, mp_glm, mp_lm, geom = "boxplot", show_outliers = 1)