predict_profile function

Instance Level Profile as Ceteris Paribus

Instance Level Profile as Ceteris Paribus

This function calculated individual profiles aka Ceteris Paribus Profiles. From DALEX version 1.0 this function calls the ceteris_paribus from the ingredients package. Find information how to use this function here: https://ema.drwhy.ai/ceterisParibus.html.

predict_profile( explainer, new_observation, variables = NULL, ..., type = "ceteris_paribus", variable_splits_type = "uniform" ) individual_profile( explainer, new_observation, variables = NULL, ..., type = "ceteris_paribus", variable_splits_type = "uniform" )

Arguments

  • explainer: a model to be explained, preprocessed by the explain function
  • new_observation: a new observation for which predictions need to be explained
  • variables: character - names of variables to be explained
  • ...: other parameters
  • type: character, currently only the ceteris_paribus is implemented
  • variable_splits_type: how variable grids shall be calculated? Use "quantiles" (default) for percentiles or "uniform" to get uniform grid of points. Will be passed to ingredients.

Returns

An object of the class ceteris_paribus_explainer. It's a data frame with calculated average response.

Examples

new_dragon <- data.frame(year_of_birth = 200, height = 80, weight = 12.5, scars = 0, number_of_lost_teeth = 5) dragon_lm_model4 <- lm(life_length ~ year_of_birth + height + weight + scars + number_of_lost_teeth, data = dragons) dragon_lm_explainer4 <- explain(dragon_lm_model4, data = dragons, y = dragons$year_of_birth, label = "model_4v") dragon_lm_predict4 <- predict_profile(dragon_lm_explainer4, new_observation = new_dragon, variables = c("year_of_birth", "height", "scars")) head(dragon_lm_predict4) plot(dragon_lm_predict4, variables = c("year_of_birth", "height", "scars")) library("ranger") dragon_ranger_model4 <- ranger(life_length ~ year_of_birth + height + weight + scars + number_of_lost_teeth, data = dragons, num.trees = 50) dragon_ranger_explainer4 <- explain(dragon_ranger_model4, data = dragons, y = dragons$year_of_birth, label = "model_ranger") dragon_ranger_predict4 <- predict_profile(dragon_ranger_explainer4, new_observation = new_dragon, variables = c("year_of_birth", "height", "scars")) head(dragon_ranger_predict4) plot(dragon_ranger_predict4, variables = c("year_of_birth", "height", "scars"))

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/