numerics_summary_do_not_need_alignment function

Numerical summary for important continuous variables that do not need alignment.

Numerical summary for important continuous variables that do not need alignment.

numerics_summary_do_not_need_alignment( burnin = 0, thin_step = 1, pred_x_truth_indicator = FALSE, pred_x_truth = NULL, gibbs_after_mcem_combine_chains_result )

Arguments

  • burnin: A numeric scalar. The saved samples are already after burnin; therefore the default value for this parameter here is 0. Can discard further samples if needed.
  • thin_step: A numeric scalar. The saved samples are already after thinning; therefore the default value for this parameter here is 1. Can be further thinned if needed.
  • pred_x_truth_indicator: A logical value. pred_x_truth_indicator = TRUE means that truth of predicted gene expressions are available. The default value is FALSE.
  • pred_x_truth: Only needed if pred_x_truth_inidcator = TRUE. An array of dimension (n, p, num_time_test), storing true gene expressions in the testing data.
  • gibbs_after_mcem_combine_chains_result: A list of objects returned from the function 'gibbs_after_mcem_combine_chains'.

Returns

Convergence assessment for important continuous variables that do not need alignment, and posterior summary for predicted gene expressions.

Details

This function corresponds to Algorithm 2: Steps 3 and 4 in the main manuscript; therefore reader can consult the paper for more explanations.

Examples

# See examples in vignette vignette("bsfadgp_regular_data_example", package = "DGP4LCF")
  • Maintainer: Jiachen Cai
  • License: MIT + file LICENSE
  • Last published: 2025-03-08

Useful links