gn3sim function

Generating Random DNA Samples Using the Rambaut and Grassly Method

Generating Random DNA Samples Using the Rambaut and Grassly Method

This function generates random DNA samples using Rambaut and Grassly method.

gn3sim(theta, seqLength, merge2)

Arguments

  • theta: a vector of variables containing the following parameters in this order--1. the first three parameters from πX\pi_X vector, 2. the first three parameters from πY\pi_Y vector, 3. the first three parameters from f0f_0 vector, 4. the six off-diagonal free parameters in the S matrix, 5. a scalar ρ\rho, 6. a vector of lengths containing K-2 values
  • seqLength: the length of sequences we need to generate
  • merge2: (K-1) x 2 matrix describing the tree topology

Details

This function generates a 4K4^K DNA array using Rambaut and Grassly, (1997) method. It depends on a set of variables theta, the sequence length and a merge matrix describing the tree topology.

Returns

A n x K observed divergence matrix

References

Faisal Ababneh, Lars S Jermiin, Chunsheng Ma, John Robinson (2006). Matched-pairs tests of homogeneity with applications to homologous nucleotide sequences. Bioinformatics, 22(10), 1225-1231.

See Also

Ntml, simapp, simemb, gn, gn2, Fmatrix

Examples

# This will give 4^5 observed divergence array theta<-(c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47), 3,.1,.5,.8)) n<-1000 merge2<-matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2) gn3<-gn3sim(theta, n, merge2) gn3
  • Maintainer: Hasinur Rahaman Khan
  • License: GPL-2
  • Last published: 2016-03-24

Useful links