Generating Random DNA Samples Using the Rambaut and Grassly Method
Generating Random DNA Samples Using the Rambaut and Grassly Method
This function generates random DNA samples using Rambaut and Grassly method.
gn3sim(theta, seqLength, merge2)
Arguments
theta: a vector of variables containing the following parameters in this order--1. the first three parameters from πX vector, 2. the first three parameters from πY vector, 3. the first three parameters from f0 vector, 4. the six off-diagonal free parameters in the S matrix, 5. a scalar ρ, 6. a vector of lengths containing K-2 values
seqLength: the length of sequences we need to generate
merge2: (K-1) x 2 matrix describing the tree topology
Details
This function generates a 4K DNA array using Rambaut and Grassly, (1997) method. It depends on a set of variables theta, the sequence length and a merge matrix describing the tree topology.
Returns
A n x K observed divergence matrix
References
Faisal Ababneh, Lars S Jermiin, Chunsheng Ma, John Robinson (2006). Matched-pairs tests of homogeneity with applications to homologous nucleotide sequences. Bioinformatics, 22(10), 1225-1231.
See Also
Ntml, simapp, simemb, gn, gn2, Fmatrix
Examples
# This will give 4^5 observed divergence arraytheta<-(c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),3,.1,.5,.8))n<-1000merge2<-matrix(c(-1,-4,-3,2,-2,-5,1,3),4,2)gn3<-gn3sim(theta, n, merge2)gn3