DM_OEM function

The DM-OEM algorithm replaces M-step with stochastic step in distributed manner, which is used to solve the parameter estimation of Poisson mixture model.

The DM-OEM algorithm replaces M-step with stochastic step in distributed manner, which is used to solve the parameter estimation of Poisson mixture model.

DM_OEM(y, M, K, seed, alpha0, lambda0, a, b)

Arguments

  • y: is a vector
  • M: is the number of subsets
  • K: is the number of Poisson distribution
  • seed: is the recommended way to specify seeds
  • alpha0: is the initial value of the mixing weight
  • lambda0: is the initial value of the mean
  • a: represents the power of the reciprocal of the step size
  • b: indicates that the M-step is not implemented for the first b data points

Returns

DM_OEMtime,DM_OEMalpha,DM_OEMlambda

Examples

library(stats) set.seed(637351) K=5 alpha1=c(rep(1/K,K)) lambda1=c(1,2,3,4,5) n=300 U=sample(c(1:n),n,replace=FALSE) y= c(rep(0,n)) for(i in 1:n){ if(U[i]<=0.2*n){ y[i] = rpois(1,lambda1[1])} else if(U[i]>0.2*n & U[i]<=0.4*n){ y[i] = rpois(1,lambda1[2])} else if(U[i]>0.4*n & U[i]<=0.6*n){ y[i] = rpois(1,lambda1[3])} else if(U[i]>0.6*n & U[i]<=0.8*n){ y[i] = rpois(1,lambda1[4])} else if(U[i]>0.8*n ){ y[i] = rpois(1,lambda1[5])} } M=5 seed=637351 set.seed(123) e=sample(c(1:n),K) alpha0=e/sum(e) lambda0=c(1.5,2.5,3.5,4.5,5.5) a=1 b=5 DM_OEM(y,M,K,seed,alpha0,lambda0,a,b)
  • Maintainer: Qian Wang
  • License: MIT + file LICENSE
  • Last published: 2022-03-30

Useful links