DPpack0.2.2 package

Differentially Private Statistical Analysis and Machine Learning

calibrateAnalyticGaussianMechanism

Calibrate Analytic Gaussian Mechanism

covDataAccess

Differentially Private Covariance Data Access Function

covDP

Differentially Private Covariance

EmpiricalRiskMinimizationDP.CMS

Privacy-preserving Empirical Risk Minimization for Binary Classificati...

EmpiricalRiskMinimizationDP.KST

Privacy-preserving Empirical Risk Minimization for Regression

ExponentialMechanism

Exponential Mechanism

GaussianMechanism

Gaussian Mechanism

generate.loss.gr.huber

Generator for Huber Loss Function Gradient

generate.loss.huber

Generator for Huber Loss Function

generate.sampling

Generator for Sampling Distribution Function for Gaussian Kernel

histogramDataAccess

Differentially Private Histogram Data Access Function

histogramDP

Differentially Private Histogram

LaplaceMechanism

Laplace Mechanism

LinearRegressionDP

Privacy-preserving Linear Regression

LogisticRegressionDP

Privacy-preserving Logistic Regression

loss.cross.entropy

Cross Entropy Loss Function

loss.gr.cross.entropy

Cross Entropy Loss Function Gradient

loss.gr.squared.error

Squared error Loss Function Gradient

loss.squared.error

Squared Error Loss Function

mapXy.gr.linear

Linear Map Function Gradient

mapXy.gr.sigmoid

Sigmoid Map Function Gradient

mapXy.linear

Linear Map Function

mapXy.sigmoid

Sigmoid Map Function

meanDataAccess

Differentially Private Mean Data Access Function

meanDP

Differentially Private Mean

medianDP

Differentially Private Median

phi.gaussian

Transform Function for Gaussian Kernel Approximation

pooledCovDataAccess

Differentially Private Pooled Covariance Data Access Function

pooledCovDP

Differentially Private Pooled Covariance

pooledVarDataAccess

Differentially Private Pooled Variance Data Access Function

pooledVarDP

Differentially Private Pooled Variance

quantileDataAccess

Differentially Private Quantile Data Access Function

quantileDP

Differentially Private Quantile

regularizer.gr.l2

l2 Regularizer Gradient

regularizer.l2

l2 Regularizer

sdDP

Differentially Private Standard Deviation

svmDP

Privacy-preserving Support Vector Machine

tableDataAccess

Differentially Private Contingency Table Data Access Function

tableDP

Differentially Private Contingency Table

tune_classification_model

Privacy-preserving Hyperparameter Tuning for Binary Classification Mod...

tune_linear_regression_model

Privacy-preserving Hyperparameter Tuning for Linear Regression Models

varDataAccess

Differentially Private Variance Data Access Function

varDP

Differentially Private Variance

WeightedERMDP.CMS

Privacy-preserving Weighted Empirical Risk Minimization

An implementation of common statistical analysis and models with differential privacy (Dwork et al., 2006a) <doi:10.1007/11681878_14> guarantees. The package contains, for example, functions providing differentially private computations of mean, variance, median, histograms, and contingency tables. It also implements some statistical models and machine learning algorithms such as linear regression (Kifer et al., 2012) <https://proceedings.mlr.press/v23/kifer12.html> and SVM (Chaudhuri et al., 2011) <https://jmlr.org/papers/v12/chaudhuri11a.html>. In addition, it implements some popular randomization mechanisms, including the Laplace mechanism (Dwork et al., 2006a) <doi:10.1007/11681878_14>, Gaussian mechanism (Dwork et al., 2006b) <doi:10.1007/11761679_29>, analytic Gaussian mechanism (Balle & Wang, 2018) <https://proceedings.mlr.press/v80/balle18a.html>, and exponential mechanism (McSherry & Talwar, 2007) <doi:10.1109/FOCS.2007.66>.

  • Maintainer: Spencer Giddens
  • License: GPL-3 | file LICENSE
  • Last published: 2024-10-20