Smin: : lower bound for initial susceptible : numeric
Smax: : upper bound for initial susceptible : numeric
Imin: : lower bound for initial infected : numeric
Imax: : upper bound for initial infected : numeric
bmin: : lower bound for infection rate : numeric
bmax: : upper bound for infection rate : numeric
gmean: : mean for recovery rate : numeric
gvar: : variance for recovery rate : numeric
nmin: : lower bound for birth rate : numeric
nmax: : upper bound for birth rate : numeric
mmin: : lower bound for death rate : numeric
mmax: : upper bound for death rate : numeric
wmin: : lower bound for waning immunity rate : numeric
wmax: : upper bound for waning immunity rate : numeric
samples: : number of LHS samples to run : numeric
rngseed: : seed for random number generator : numeric
tstart: : Start time of simulation : numeric
tfinal: : Final time of simulation : numeric
dt: : times for which result is returned : numeric
Returns
The function returns the output as a list. The list element 'dat' contains a data frame. The simulation returns for each parameter sample the peak and final value for I and final for S. Also returned are all parameter values as individual columns and an indicator stating if steady state was reached. A final variable 'steady' is returned for each simulation. It is TRUE if the simulation did reach steady state, otherwise FALSE.
Details
The SIRS model with demographics is simulated for different parameter values. The user provides ranges for the initial conditions and parameter values and the number of samples. The function does Latin Hypercube Sampling (LHS) of the parameters and runs the model for each sample. Distribution for all parameters is assumed to be uniform between the min and max values. The only exception is the recovery parameter, which (for illustrative purposes) is assumed to be gamma distributed with the specified mean and variance. This code is part of the DSAIDE R package. For additional model details, see the corresponding app in the DSAIDE package.
Warning
This function does not perform any error checking. So if you try to do something nonsensical (e.g. specify negative parameter values or fractions > 1), the code will likely abort with an error message.
Examples
# To run the simulation with default parameters just call the function:## Not run: result <- simulate_SIR_usanalysis()# To choose parameter values other than the standard one, specify them, like such:result <- simulate_SIR_usanalysis(gmean =2, gvar =0.2, samples =5, tfinal =50)# You should then use the simulation result returned from the function, like this:plot(result$dat[,"g"],result$dat[,"Ipeak"],xlab='values for g',ylab='Peak Bacteria',type='l')
See Also
See the Shiny app documentation corresponding to this simulator function for more details on this model.