PDEplot function

PDE plot

PDE plot

This function plots the Pareto probability density estimation (PDE), uses PDEstimationForGauss and ParetoRadius.

PDEplot(Data, paretoRadius = 0, weight = 1, kernels = NULL, LogPlot = F, PlotIt = TRUE, title = "ParetoDensityEstimation(PDE)", color = "blue", xpoints = FALSE, xlim, ylim, xlab, ylab = "PDE", ggPlot = ggplot(), sampleSize = 2e+05, lwd = 2)

Arguments

  • Data: [1:n] numeric vector of data to be plotted.
  • paretoRadius: numeric, the Pareto Radius. If omitted, calculate by paretoRad.
  • weight: numeric, Weight*ParetoDensity is plotted. 1 by default.
  • kernels: numeric vector of kernels. Optional
  • LogPlot: LogLog PDEplot if TRUE, xpoints has to be FALSE. Optional
  • PlotIt: logical, if plot. TRUE by default.
  • title: character vector, title of plot.
  • color: character vector, color of plot.
  • xpoints: logical, if TRUE only points are plotted. FALSE by default.
  • xlim: Arguments to be passed to the plot method.
  • ylim: Arguments to be passed to the plot method.
  • xlab: Arguments to be passed to the plot method.
  • ylab: Arguments to be passed to the plot method.
  • ggPlot: ggplot2 object to be plotted upon. Insert an exisiting plot to add a new PDEPlot to it. Default: empty plot
  • sampleSize: default(200000), sample size, if datavector is to big
  • lwd: linewidth, see plot

Returns

  • kernels: numeric vector. The x points of the PDE function.

  • paretoDensity: numeric vector, the PDE(x).

  • paretoRadius: numeric value, the Pareto Radius used for the plot.

  • ggPlot: ggplot2 object. Can be used to further modify the plot or add other plots.

References

Ultsch, A.: Pareto Density Estimation: A Density Estimation for Knowledge Discovery, Baier D., Wernecke K.D. (Eds), In Innovations in Classification, Data Science, and Information Systems - Proceedings 27th Annual Conference of the German Classification Society (GfKL) 2003, Berlin, Heidelberg, Springer, pp, 91-100, 2005.

Author(s)

Michael Thrun

Examples

x <- rnorm(1000, mean = 0.5, sd = 0.5) y <- rnorm(750, mean = -0.5, sd = 0.75) plt <- PDEplot(x, color = "red")$ggPlot plt <- PDEplot(y, color = "blue", ggPlot = plt)$ggPlot # Second Example # ggplotObj=ggplot() # for(i in 1:length(Variables)) # ggplotObj=PDEplot(Data[,i],ggPlot = ggplotObj)$ggPlot
  • Maintainer: Michael Thrun
  • License: GPL-3
  • Last published: 2025-01-26

Downloads (last 30 days):