Estimates densities for two-dimensional data with the given estimation type
estimateDensity2D(X, Y, DensityEstimation ="SDH",SampleSize, na.rm =FALSE, NoBinsOrPareto =NULL)
Arguments
X: [1:n] numerical vector of first feature
Y: [1:n] numerical vector of second feature
DensityEstimation: Either "PDE","SDH" or "kde2d"
SampleSize: Sample Size in case of big data
na.rm: Function may not work with non finite values. If these cases should be automatically removed, set parameter TRUE
NoBinsOrPareto: Density specifc parameters, for PDEscatter(ParetoRadius) or SDH (nbins)) or kde2d(bins)
Details
Each two-dimensional data point is defined by its corresponding X and Y value.
Returns
List V with - X: [1:m] numerical vector of first feature, m<=n depending if all values are finite an na.rm parameter
Y: [1:m] numerical vector of second feature, m<=n depending if all values are finite an na.rm parameter
Densities: the density of each two-dimensional data point
References
[Ultsch, 2005] Ultsch, A.: Pareto density estimation: A density estimation for knowledge discovery, In Baier, D. & Werrnecke, K. D. (Eds.), Innovations in classification, data science, and information systems, (Vol. 27, pp. 91-100), Berlin, Germany, Springer, 2005.
[Eilers/Goeman, 2004] Eilers, P. H., & Goeman, J. J.: Enhancing scatterplots with smoothed densities, Bioinformatics, Vol. 20(5), pp. 623-628. 2004