PswarmRadiusSequential function

intern function, do not use yourself

intern function, do not use yourself

Finds the weak Nash equilibirium for DataBots in one epoch(Radius), requires the setting of constants, grid, and so on in Pswarm

PswarmRadiusSequential( AllDataBotsPosOld, Radius, DataDists, IndPossibleDBPosR, RadiusPositionsschablone, pp, Nullpunkt, Lines, Columns, nBots, limit, steigungsverlaufind, Happiness, debug)

Arguments

  • AllDataBotsPosOld: ComplexVector [1:n,1], DataBots position in the last Nash-Equlibriuum
  • Radius: double, Radius of payoff function, neighborhood, where other DatsBots can be smelled
  • DataDists: NumericMatrix, Inputdistances[1:n,1:n]
  • IndPossibleDBPosR: ComplexVector, see output of findPossiblePositionsCsingle
  • RadiusPositionsschablone: NumericMatrix, see AllallowedDBPosR0 in setPolarGrid
  • pp: NumericVector, number of jumping simultaneously DataBots of one eppoch (per nash-equilibirum), this vector is linearly monotonically decreasing
  • Nullpunkt: NumericVector, equals which(AllallowedDBPosR0==0,arr.ind=T), see see AllallowedDBPosR0 in setPolarGrid
  • Lines: double, small edge length of rectangulare grid
  • Columns: double, big edge length of rectangulare grid
  • nBots: double, intern constant, equals round(pp[Radius]*DBAnzahl)
  • limit: int, intern constant, equals ceiling(1/pp[Radius])
  • steigungsverlaufind: int, intern constant
  • Happiness: double, intern constant, sum of payoff of all databots in random condition before the algorithm starts
  • debug: optional, bool: If TRUE prints status every 100 iterations

Returns

list of - AllDataBotsPos: ComplexVector, indizes of DataBot Positions after a weak Nash equlibrium is found

  • stressverlauf: NumericVector, intern result, for debugging only

  • fokussiertlaufind: NumericVector, intern result, for debugging only

Details

Algorithm is described in [Thrun, 2018, p. 95, Listing 8.1].

References

[Thrun, 2018] Thrun, M. C.: Projection Based Clustering through Self-Organization and Swarm Intelligence, doctoral dissertation 2017, Springer, Heidelberg, ISBN: 978-3-658-20539-3, tools:::Rd_expr_doi("10.1007/978-3-658-20540-9") , 2018.

Author(s)

Michael Thrun

  • Maintainer: Michael Thrun
  • License: GPL-3
  • Last published: 2024-06-20