CovLP function

CovLp

CovLp

Weighted by LpL ^ p depth (outlyingness) multivariate location and scatter estimators.

CovLP(x, pdim = 2, la = 1, lb = 1)

Arguments

  • x: The data as a matrix or data frame. If it is a matrix or data frame, then each row is viewed as one multivariate observation.
  • pdim: The parameter of the weighted Lpdim{L} ^ {p} dim depth
  • la: parameter of a simple weight function w=ax+bw = ax + b
  • lb: parameter of a simple weight function w=ax+bw = ax + b

Returns

loc: Robust Estimate of Location:

cov: Robust Estimate of Covariance:

Returns depth weighted covariance matrix.

Details

Using depth function one can define a depth-weighted location and scatter estimators. In case of location estimator we have

L(F)=xw1(D(x,F))dF(x)/w1(D(x,F))dF(x) L(F) = {\int {{x}{{w}_{1}}(D({x}, F))dF({x})}} / {{{w}_{1}}(D({x}, F))dF({x})}

Subsequently, a depth-weighted scatter estimator is defined as

S(F)=(xL(F))(xL(F))Tw2(D(x,F))dF(x)w2(D(x,F))dF(x), S(F) = \frac{ \int {({x} - L(F)){{({x} - L(F))} ^ {T}}{{w}_{2}}(D({x}, F))dF({x})} }{ \int {{{w}_{2}}(D({x}, F))dF({x})}},

where w2(){{w}_{2}}(\cdot) is a suitable weight function that can be different from w1(){{w}_{1}}(\cdot).

The DepthProc package offers these estimators for weighted Lp{L} ^ {p} depth. Note that L()L(\cdot) and S()S(\cdot) include multivariate versions of trimmed means and covariance matrices. Their sample counterparts take the form

TWD(Xn)=i=1ndiXi/i=1ndi, {{T}_{WD}}({{{X}} ^ {n}}) = {\sum\limits_{i = 1} ^ {n} {{{d}_{i}}{{X}_{i}}}} / {\sum\limits_{i = 1} ^ {n} {{{d}_{i}}}}, DIS(Xn)=i=1ndi(XiTWD(Xn))(XiTWD(Xn))Ti=1ndi, DIS({{{X}}^{n}}) = \frac{ \sum\limits_{i = 1} ^ {n} {{{d}_{i}}\left( {{{X}}_{i}} - {{T}_{WD}}({{{X}} ^ {n}}) \right){{\left( {{{X}}_{i}} - {{T}_{WD}}({{{X}} ^ {n}}) \right)} ^ {T}}} }{ \sum\limits_{i = 1} ^ {n} {{{d}_{i}}}},

where di{{d}_{i}} are sample depth weights, w1(x)=w2(x)=x{{w}_{1}}(x) = {{w}_{2}}(x) = x.

Examples

# EXAMPLE 1 x <- mvrnorm(n = 100, mu = c(0, 0), Sigma = 3 * diag(2)) cov_x <- CovLP(x, 2, 1, 1) # EXAMPLE 2 data(under5.mort, inf.mort, maesles.imm) data1990 <- na.omit(cbind(under5.mort[, 1], inf.mort[, 1], maesles.imm[, 1])) CovLP(data1990)

See Also

depthContour and depthPersp for depth graphics.

Author(s)

Daniel Kosiorowski and Zygmunt Zawadzki from Cracow University of Economics.