This function calculates deepest regression estimator for simple regression.
deepReg2d(x, y)
Arguments
x: Independent variable.
y: Dependent variable.
Details
Function originates from an original algorithm proposed by Rousseeuw and Hubert. Let Zn=(x1,y1),...,(xn,yn)⊂Rd denotes a sample considered from a following semiparametric model: yl=a0+a1x1l+...+a(d−1)lx(d−1)l+εl,l=1,...,n, we calculate a depth of a fit α=(a0,...,ad−1) as RD(α,Zn)=u=0min♯l:uTxlrl(α)<0,l=1,...,n, where r(⋅) denotes the regression residual, α=(a0,...,ad−1), uTxl=0. The deepest regression estimatorDR(α,Zn) is defined as DR(α,Zn)=α=0argmaxRD(α,Zn)
Examples
# EXAMPLE 1data(pension)plot(pension)abline( lm(Reserves ~ Income, data = pension), lty =3, lwd =2)# lmabline( deepReg2d(pension[,1], pension[,2]), lwd =2)# deepreg2d# EXAMPLE 2data(under5.mort)data(inf.mort)data(maesles.imm)data2011 <- na.omit( cbind(under5.mort[,22], inf.mort[,22], maesles.imm[,22]))x <- data2011[,3]y <- data2011[,2]plot( x, y, cex =1.2, ylab ="infant mortality rate per 1000 live birth", xlab ="against masles immunized percentage", main ="Projection Depth Trimmed vs. LS regressions")abline(lm(x ~ y), lwd =2, col ="black")# lmabline( deepReg2d (x, y), lwd =2, col ="red")# trimmed reglegend("bottomleft", c("LS","DeepReg"), fill = c("black","red"), cex =1.4, bty ="n")
References
Rousseeuw J.P., Hubert M. (1998), Regression Depth, Journal of The American Statistical Association, vol.94.
Author(s)
Daniel Kosiorowski, Mateusz Bocian, Anna Wegrzynkiewicz and Zygmunt Zawadzki from Cracow University of Economics.