deepReg2d function

Simple deepest regression method.

Simple deepest regression method.

This function calculates deepest regression estimator for simple regression.

deepReg2d(x, y)

Arguments

  • x: Independent variable.
  • y: Dependent variable.

Details

Function originates from an original algorithm proposed by Rousseeuw and Hubert. Let Zn=(x1,y1),...,(xn,yn)Rd{Z} ^ {n} = {(x_1, y_1), ..., (x_n, y_n)} \subset {{R} ^ {d}} denotes a sample considered from a following semiparametric model: yl=a0+a1x1l+...+a(d1)lx(d1)l+εl,l=1,...,n{{y}_{l}} = {{a}_{0}} + {{a}_{1}}{{x}_{1l}} + ... + {{a}_{(d - 1)l}}{{x}_{(d - 1)l}} + {{\varepsilon }_{l}}, {l = 1, ..., n}, we calculate a depth of a fit α=(a0,...,ad1)\alpha = (a_{0}, ..., a_{d - 1}) as RD(α,Zn)=u0minl:rl(α)uTxl<0,l=1,...,nRD(\alpha, {{Z} ^ {n}}) = {u \ne 0}\min\sharp {l: \frac{ {{r}_{l}}(\alpha) }{ {{u} ^ {T}}{{x}_{l}} } < 0, l = 1, ..., n}, where r()r(\cdot) denotes the regression residual, α=(a0,...,ad1)\alpha = (a_{0}, ..., a_{d - 1}), uTxl0{u} ^ {T}{x}_{l} \ne 0. The deepest regression estimator DR(α,Zn)DR(\alpha, {{Z} ^ {n}}) is defined as DR(α,Zn)=α0argmaxRD(α,Zn)DR(\alpha, {{Z} ^ {n}}) = {\alpha \ne 0}\,\arg\max\,RD(\alpha, {{Z} ^ {n}})

Examples

# EXAMPLE 1 data(pension) plot(pension) abline( lm(Reserves ~ Income, data = pension), lty = 3, lwd = 2) # lm abline( deepReg2d(pension[, 1], pension[, 2]), lwd = 2) # deepreg2d # EXAMPLE 2 data(under5.mort) data(inf.mort) data(maesles.imm) data2011 <- na.omit( cbind(under5.mort[, 22], inf.mort[, 22], maesles.imm[, 22])) x <- data2011[, 3] y <- data2011[, 2] plot( x, y, cex = 1.2, ylab = "infant mortality rate per 1000 live birth", xlab = "against masles immunized percentage", main = "Projection Depth Trimmed vs. LS regressions" ) abline(lm(x ~ y), lwd = 2, col = "black") # lm abline( deepReg2d (x, y), lwd = 2, col = "red" ) # trimmed reg legend( "bottomleft", c("LS", "DeepReg"), fill = c("black", "red"), cex = 1.4, bty = "n" )

References

Rousseeuw J.P., Hubert M. (1998), Regression Depth, Journal of The American Statistical Association, vol.94.

Author(s)

Daniel Kosiorowski, Mateusz Bocian, Anna Wegrzynkiewicz and Zygmunt Zawadzki from Cracow University of Economics.