modelFit is used to fit a metamodel of class lm, gam, mars, polymars or km.
modelFit (X,Y, type,...)
Arguments
X: a data.frame containing the design of experiments
Y: a vector containing the response variable
type: represents the method used to fit the model:
"Linear"
linear model,
"StepLinear"
stepwise,
"Additive"
gam,
"MARS"
mars
"PolyMARS"
polymars
"Kriging"
kriging model.
...: corresponds to the parameter(s) of the model. The list of the needed arguments for each type of models is given below:
"Linear"
formula (see formulaLm ),
"StepLinear"
formula
penalty parameter,
"Additive"
formula (see formulaAm ),
"MARS"
degree ,
"PolyMARS"
gcv criteria.
"Kriging"
formula
covtype
Returns
A list with the following components: - X: a data frame representing the design of experiments
Y: a vector representing the response
type: the type of metamodel
model: a fitted model of the specified class and the value of the parameter(s) depending on the fitted model.
Author(s)
D. Dupuy
See Also
modelPredict
Examples
# A 2D exampleBranin <-function(x1,x2){ x1 <- x1*15-5 x2 <- x2*15(x2 -5/(4*pi^2)*(x1^2)+5/pi*x1 -6)^2+10*(1-1/(8*pi))*cos(x1)+10}# a 2D uniform design and the value of the response at these pointsX <- matrix(runif(24),ncol=2,nrow=12)Z <- Branin(X[,1],X[,2])Y <-(Z-mean(Z))/sd(Z)# construction of a linear modelmodLm <- modelFit(X,Y,type ="Linear",formula=Y~X1+X2+X1:X2+I(X1^2)+I(X2^2))summary(modLm$model)## Not run:# construction of a stepwise-selected model modStep <- modelFit(X,Y,type ="StepLinear",penalty=log(dim(X)[1]), formula=Y~X1+X2+X1:X2+I(X1^2)+I(X2^2))summary(modStep$model)# construction of an additive modellibrary(gam)modAm <- modelFit(X,Y,type ="Additive",formula=Y~s(X1)+s(X2))summary(modAm$model)# construction of a MARS model of degree 2library(mda)modMARS <- modelFit(X,Y,type ="MARS",degree=2)print(modMARS$model)# construction of a PolyMARS model with a penalty parameter equal to 1library(polspline)modPolyMARS <- modelFit(X,Y,type ="PolyMARS",gcv=1)summary(modPolyMARS$model)# construction of a Kriging modelmodKm <- modelFit(X,Y,type ="Kriging")str(modKm$model)## End(Not run)