modelPredict function

Prediction at newdata for a fitted metamodel

Prediction at newdata for a fitted metamodel

modelPredict computes predicted values based on the model given in argument.

modelPredict(model,newdata)

Arguments

  • model: a fitted model obtained from modelFit
  • newdata: a matrix (or a data frame) which represents the predictor values at which the fitted values will be computed.

Returns

a vector of predicted values, obtained by evaluating the model at newdata.

Author(s)

D. Dupuy

See Also

modelFit

Examples

X <- seq(-1,1,l=21) Y <- 3*X + rnorm(21,0,0.5) # construction of a linear model modLm <- modelFit(X,Y,type = "Linear",formula="Y~.") print(modLm$model$coefficient) ## Not run: # illustration on a 2-dimensional example Branin <- function(x1,x2) { x1 <- 1/2*(15*x1+5) x2 <- 15/2*(x2+1) (x2 - 5.1/(4*pi^2)*(x1^2) + 5/pi*x1 - 6)^2 + 10*(1 - 1/(8*pi))*cos(x1) + 10 } # A 2D uniform design with 20 points in [-1,1]^2 n <- 20 X <- matrix(runif(n*2,-1,1),ncol=2,nrow=n) Y <- Branin(X[,1],X[,2]) Z <- (Y-mean(Y))/sd(Y) # Construction of a Kriging model mKm <- modelFit(X,Z,type = "Kriging") # Prediction and comparison between the exact function and the predicted one xtest <- seq(-1, 1, length= 21) ytest <- seq(-1, 1, length= 21) Zreal <- outer(xtest, ytest, Branin) Zreal <- (Zreal-mean(Y))/sd(Y) Zpredict <- modelPredict(mKm,expand.grid(xtest,ytest)) z <- abs(Zreal-matrix(Zpredict,nrow=length(xtest),ncol=length(ytest))) contour(xtest, xtest, z,30) points(X,pch=19) ## End(Not run)
  • Maintainer: C. Helbert
  • License: GPL-3
  • Last published: 2023-12-04

Useful links