penaltyPolyMARS function

Choice of the penalty parameter for a PolyMARS model

Choice of the penalty parameter for a PolyMARS model

This function fits a PolyMARS model for different values of the penalty parameter and compute criteria.

penaltyPolyMARS(X,Y,test=NULL,graphic=FALSE,K=10, Penalty=seq(0,5,by=0.2))

Arguments

  • X: a data.frame containing the design of experiments
  • Y: a vector containing the response variable
  • test: a data.frame containing the design and the response of a test set when available, the prediction criteria will be computed for the test data (default corresponds to no test set)
  • graphic: if TRUE the values of the criteria are represented
  • K: the number of folds for cross-validation (by default, K=10)
  • Penalty: a vector containing the values of the penalty parameter

Returns

A data frame containing - a: the values of the penalty parameter

  • R2: the R2 criterion evaluted on the learning set

  • m: the size of the selected model

If a test set is available the last row is - R2test: the R2 criterion evaluated on the test set

If no test set is available, criteria computed by K-corss-validation are provided: - Q2: the Q2 evaluated by cross-validation (by default, K=10)

  • RMSE CV: RMSE computed by cross-validation

Note that the penalty parameter could be chosen by minimizing the value of the RMSE by cross-validation.

See Also

modelFit, R2 and crossValidation

Author(s)

D. Dupuy

Examples

data(dataIRSN5D) X <- dataIRSN5D[,1:5] Y <- dataIRSN5D[,6] data(testIRSN5D) library(polspline) Crit <- penaltyPolyMARS(X,Y,test=testIRSN5D[,-7],graphic=TRUE)
  • Maintainer: C. Helbert
  • License: GPL-3
  • Last published: 2023-12-04

Useful links