dDBH function

The Discrete Burr Hatke distribution

The Discrete Burr Hatke distribution

These functions define the density, distribution function, quantile function and random generation for the Discrete Burr Hatke distribution with parameter μ\mu.

dDBH(x, mu, log = FALSE) pDBH(q, mu, lower.tail = TRUE, log.p = FALSE) qDBH(p, mu = 1, lower.tail = TRUE, log.p = FALSE) rDBH(n, mu = 1)

Arguments

  • x, q: vector of (non-negative integer) quantiles.
  • mu: vector of the mu parameter.
  • log, log.p: logical; if TRUE, probabilities p are given as log(p).
  • lower.tail: logical; if TRUE (default), probabilities are P[X<=x]P[X <= x], otherwise, P[X>x]P[X > x].
  • p: vector of probabilities.
  • n: number of random values to return

Returns

dDBH gives the density, pDBH gives the distribution function, qDBH gives the quantile function, rDBH

generates random deviates.

Details

The Discrete Burr-Hatke distribution with parameters μ\mu has a support 0, 1, 2, ... and density given by

f(xμ)=(1x+1μx+2)μxf(x | \mu) = (\frac{1}{x+1}-\frac{\mu}{x+2})\mu^{x}

The pmf is log-convex for all values of 0<μ<10 < \mu < 1, where f(x+1;μ)f(x;μ)\frac{f(x+1;\mu)}{f(x;\mu)}

is an increasing function in xx for all values of the parameter μ\mu.

Note: in this implementation we changed the original parameters λ\lambda for μ\mu, we did it to implement this distribution within gamlss framework.

Examples

# Example 1 # Plotting the mass function for different parameter values plot(x=0:5, y=dDBH(x=0:5, mu=0.1), type="h", lwd=2, col="dodgerblue", las=1, ylab="P(X=x)", xlab="X", ylim=c(0, 1), main="Probability mu=0.1") plot(x=0:10, y=dDBH(x=0:10, mu=0.5), type="h", lwd=2, col="tomato", las=1, ylab="P(X=x)", xlab="X", ylim=c(0, 1), main="Probability mu=0.5") plot(x=0:15, y=dDBH(x=0:15, mu=0.9), type="h", lwd=2, col="green4", las=1, ylab="P(X=x)", xlab="X", ylim=c(0, 1), main="Probability mu=0.9") # Example 2 # Checking if the cumulative curves converge to 1 x_max <- 15 cumulative_probs1 <- pDBH(q=0:x_max, mu=0.1) cumulative_probs2 <- pDBH(q=0:x_max, mu=0.5) cumulative_probs3 <- pDBH(q=0:x_max, mu=0.9) plot(x=0:x_max, y=cumulative_probs1, col="dodgerblue", type="o", las=1, ylim=c(0, 1), main="Cumulative probability for Burr-Hatke", xlab="X", ylab="Probability") points(x=0:x_max, y=cumulative_probs2, type="o", col="tomato") points(x=0:x_max, y=cumulative_probs3, type="o", col="green4") legend("bottomright", col=c("dodgerblue", "tomato", "green4"), lwd=3, legend=c("mu=0.1", "mu=0.5", "mu=0.9")) # Example 3 # Comparing the random generator output with # the theoretical probabilities mu <- 0.4 x_max <- 10 probs1 <- dDBH(x=0:x_max, mu=mu) names(probs1) <- 0:x_max x <- rDBH(n=1000, mu=mu) probs2 <- prop.table(table(x)) cn <- union(names(probs1), names(probs2)) height <- rbind(probs1[cn], probs2[cn]) nombres <- cn mp <- barplot(height, beside = TRUE, names.arg = nombres, col=c("dodgerblue3","firebrick3"), las=1, xlab="X", ylab="Proportion") legend("topright", legend=c("Theoretical", "Simulated"), bty="n", lwd=3, col=c("dodgerblue3","firebrick3"), lty=1) # Example 4 # Checking the quantile function mu <- 0.97 p <- seq(from=0, to=1, by = 0.01) qxx <- qDBH(p, mu, lower.tail = TRUE, log.p = FALSE) plot(p, qxx, type="s", lwd=2, col="green3", ylab="quantiles", main="Quantiles of BH(mu=0.97)")

References

\insertRef el2020discreteDiscreteDists

See Also

DBH .

Author(s)

Valentina Hurtado Sepulveda, vhurtados@unal.edu.co

  • Maintainer: Freddy Hernandez-Barajas
  • License: MIT + file LICENSE
  • Last published: 2024-09-13