These functions define the density, distribution function, quantile function and random generation for the discrete Inverted Kumaraswamy, DIKUM(), distribution with parameters μ and σ.
dDIKUM(x, mu =1, sigma =5, log =FALSE)pDIKUM(q, mu =1, sigma =5, lower.tail =TRUE, log.p =FALSE)rDIKUM(n, mu =1, sigma =5)qDIKUM(p, mu =1, sigma =5, lower.tail =TRUE, log.p =FALSE)
Arguments
x, q: vector of (non-negative integer) quantiles.
mu: vector of the mu parameter.
sigma: vector of the sigma parameter.
log, log.p: logical; if TRUE, probabilities p are given as log(p).
lower.tail: logical; if TRUE (default), probabilities are P[X<=x], otherwise, P[X>x].
n: number of random values to return.
p: vector of probabilities.
Returns
dDIKUM gives the density, pDIKUM gives the distribution function, qDIKUM gives the quantile function, rDIKUM
generates random deviates.
Details
The discrete Inverted Kumaraswamy distribution with parameters μ and σ
has a support 0, 1, 2, ... and density given by
f(x∣μ,σ)=(1−(2+x)−μ)σ−(1−(1+x)−μ)σ
with μ>0 and σ>0.
Note: in this implementation we changed the original parameters α and β
for μ and σ respectively, we did it to implement this distribution within gamlss framework.
Examples
# Example 1# Plotting the mass function for different parameter valuesx_max <-30probs1 <- dDIKUM(x=0:x_max, mu=1, sigma=5)probs2 <- dDIKUM(x=0:x_max, mu=1, sigma=20)probs3 <- dDIKUM(x=0:x_max, mu=1, sigma=50)# To plot the first k valuesplot(x=0:x_max, y=probs1, type="o", lwd=2, col="dodgerblue", las=1, ylab="P(X=x)", xlab="X", main="Probability for Inverted Kumaraswamy Distribution", ylim=c(0,0.12))points(x=0:x_max, y=probs2, type="o", lwd=2, col="tomato")points(x=0:x_max, y=probs3, type="o", lwd=2, col="green4")legend("topright", col=c("dodgerblue","tomato","green4"), lwd=3, legend=c("mu=1, sigma=5","mu=1, sigma=20","mu=1, sigma=50"))# Example 2# Checking if the cumulative curves converge to 1x_max <-500cumulative_probs1 <- pDIKUM(q=0:x_max, mu=1, sigma=5)cumulative_probs2 <- pDIKUM(q=0:x_max, mu=1, sigma=20)cumulative_probs3 <- pDIKUM(q=0:x_max, mu=1, sigma=50)plot(x=0:x_max, y=cumulative_probs1, col="dodgerblue", type="o", las=1, ylim=c(0,1), main="Cumulative probability for Inverted Kumaraswamy Distribution", xlab="X", ylab="Probability")points(x=0:x_max, y=cumulative_probs2, type="o", col="tomato")points(x=0:x_max, y=cumulative_probs3, type="o", col="green4")legend("bottomright", col=c("dodgerblue","tomato","green4"), lwd=3, legend=c("mu=1, sigma=5","mu=1, sigma=20","mu=1, sigma=50"))# Example 3# Comparing the random generator output with# the theoretical probabilitiesx_max <-20probs1 <- dDIKUM(x=0:x_max, mu=3, sigma=20)names(probs1)<-0:x_max
x <- rDIKUM(n=1000, mu=3, sigma=20)probs2 <- prop.table(table(x))cn <- union(names(probs1), names(probs2))height <- rbind(probs1[cn], probs2[cn])nombres <- cn
mp <- barplot(height, beside =TRUE, names.arg = nombres, col=c('dodgerblue3','firebrick3'), las=1, xlab='X', ylab='Proportion')legend('topright', legend=c('Theoretical','Simulated'), bty='n', lwd=3, col=c('dodgerblue3','firebrick3'), lty=1)# Example 4# Checking the quantile functionmu <-1sigma <-5p <- seq(from=0.01, to=0.99, by=0.1)qxx <- qDIKUM(p=p, mu=mu, sigma=sigma, lower.tail=TRUE, log.p=FALSE)plot(p, qxx, type="s", lwd=2, col="green3", ylab="quantiles", main="Quantiles of HP(mu = sigma = 3)")