dDLD function

The Discrete Lindley distribution

The Discrete Lindley distribution

These functions define the density, distribution function, quantile function and random generation for the Discrete Lindley distribution with parameter μ\mu.

dDLD(x, mu, log = FALSE) pDLD(q, mu, lower.tail = TRUE, log.p = FALSE) qDLD(p, mu, lower.tail = TRUE, log.p = FALSE) rDLD(n, mu = 0.5)

Arguments

  • x, q: vector of (non-negative integer) quantiles.
  • mu: vector of positive values of this parameter.
  • log, log.p: logical; if TRUE, probabilities p are given as log(p).
  • lower.tail: logical; if TRUE (default), probabilities are P[X<=x]P[X <= x], otherwise, P[X>x]P[X > x].
  • p: vector of probabilities.
  • n: number of random values to return.

Returns

dDLD gives the density, pDLD gives the distribution function, qDLD gives the quantile function, rDLD

generates random deviates.

Details

The Discrete Lindley distribution with parameters μ\mu has a support 0, 1, 2, ... and density given by

f(xμ)=eμx1+μ[μ(12eμ)+(1eμ)(1+μx)]f(x | \mu) = \frac{e^{-\mu x}}{1 + \mu} \left[ \mu(1 - 2e^{-\mu}) + (1- e^{-\mu})(1+\mu x)\right]

Note: in this implementation we changed the original parameters θ\theta for μ\mu, we did it to implement this distribution within gamlss framework.

Examples

# Example 1 # Plotting the mass function for different parameter values plot(x=0:25, y=dDLD(x=0:25, mu=0.2), type="h", lwd=2, col="dodgerblue", las=1, ylab="P(X=x)", xlab="X", ylim=c(0, 0.1), main="Probability mu=0.2") plot(x=0:15, y=dDLD(x=0:15, mu=0.5), type="h", lwd=2, col="tomato", las=1, ylab="P(X=x)", xlab="X", ylim=c(0, 0.25), main="Probability mu=0.5") plot(x=0:8, y=dDLD(x=0:8, mu=1), type="h", lwd=2, col="green4", las=1, ylab="P(X=x)", xlab="X", ylim=c(0, 0.5), main="Probability mu=1") plot(x=0:5, y=dDLD(x=0:5, mu=2), type="h", lwd=2, col="red", las=1, ylab="P(X=x)", xlab="X", ylim=c(0, 1), main="Probability mu=2") # Example 2 # Checking if the cumulative curves converge to 1 x_max <- 10 cumulative_probs1 <- pDLD(q=0:x_max, mu=0.2) cumulative_probs2 <- pDLD(q=0:x_max, mu=0.5) cumulative_probs3 <- pDLD(q=0:x_max, mu=1) cumulative_probs4 <- pDLD(q=0:x_max, mu=2) plot(x=0:x_max, y=cumulative_probs1, col="dodgerblue", type="o", las=1, ylim=c(0, 1), main="Cumulative probability for Lindley", xlab="X", ylab="Probability") points(x=0:x_max, y=cumulative_probs2, type="o", col="tomato") points(x=0:x_max, y=cumulative_probs3, type="o", col="green4") points(x=0:x_max, y=cumulative_probs4, type="o", col="magenta") legend("bottomright", col=c("dodgerblue", "tomato", "green4", "magenta"), lwd=3, legend=c("mu=0.2", "mu=0.5", "mu=1", "mu=2")) # Example 3 # Comparing the random generator output with # the theoretical probabilities mu <- 0.6 x <- rDLD(n = 1000, mu = mu) x_max <- max(x) probs1 <- dDLD(x = 0:x_max, mu = mu) names(probs1) <- 0:x_max probs2 <- prop.table(table(x)) cn <- union(names(probs1), names(probs2)) height <- rbind(probs1[cn], probs2[cn]) nombres <- cn mp <- barplot(height, beside = TRUE, names.arg = nombres, col=c('dodgerblue3','firebrick3'), las=1, xlab='X', ylab='Proportion') legend('topright', legend=c('Theoretical', 'Simulated'), bty='n', lwd=3, col=c('dodgerblue3','firebrick3'), lty=1) # Example 4 # Checking the quantile function mu <- 0.9 p <- seq(from=0, to=1, by=0.01) qxx <- qDLD(p, mu, lower.tail = TRUE, log.p = FALSE) plot(p, qxx, type="S", lwd=2, col="green3", ylab="quantiles", main="Quantiles of DL(mu=0.9)")

References

\insertRef bakouch2014newDiscreteDists

See Also

DLD .

Author(s)

Yojan Andrés Alcaraz Pérez, yalcaraz@unal.edu.co

  • Maintainer: Freddy Hernandez-Barajas
  • License: MIT + file LICENSE
  • Last published: 2024-09-13