dDMOLBE function

The DMOLBE distribution

The DMOLBE distribution

These functions define the density, distribution function, quantile function and random generation for the Discrete Marshall–Olkin Length Biased Exponential DMOLBE distribution with parameters μ\mu and σ\sigma.

dDMOLBE(x, mu = 1, sigma = 1, log = FALSE) pDMOLBE(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rDMOLBE(n, mu = 1, sigma = 1) qDMOLBE(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

  • x, q: vector of (non-negative integer) quantiles.
  • mu: vector of the mu parameter.
  • sigma: vector of the sigma parameter.
  • log, log.p: logical; if TRUE, probabilities p are given as log(p).
  • lower.tail: logical; if TRUE (default), probabilities are P[X<=x]P[X <= x], otherwise, P[X>x]P[X > x].
  • n: number of random values to return.
  • p: vector of probabilities.

Returns

dDMOLBE gives the density, pDMOLBE gives the distribution function, qDMOLBE gives the quantile function, rDMOLBE

generates random deviates.

Details

The DMOLBE distribution with parameters μ\mu and σ\sigma

has a support 0, 1, 2, ... and mass function given by

f(xμ,σ)=σ((1+x/μ)exp(x/μ)(1+(x+1)/μ)exp((x+1)/μ))(1(1σ)(1+x/μ)exp(x/μ))((1(1σ)(1+(x+1)/μ)exp((x+1)/μ))f(x | \mu, \sigma) = \frac{\sigma ((1+x/\mu)\exp(-x/\mu)-(1+(x+1)/\mu)\exp(-(x+1)/\mu))}{(1-(1-\sigma)(1+x/\mu)\exp(-x/\mu)) ((1-(1-\sigma)(1+(x+1)/\mu)\exp(-(x+1)/\mu))}

with μ>0\mu > 0 and σ>0\sigma > 0

Examples

# Example 1 # Plotting the mass function for different parameter values x_max <- 20 probs1 <- dDMOLBE(x=0:x_max, mu=0.5, sigma=0.5) probs2 <- dDMOLBE(x=0:x_max, mu=5, sigma=0.5) probs3 <- dDMOLBE(x=0:x_max, mu=1, sigma=2) # To plot the first k values plot(x=0:x_max, y=probs1, type="o", lwd=2, col="dodgerblue", las=1, ylab="P(X=x)", xlab="X", main="Probability for DMOLBE", ylim=c(0, 0.80)) points(x=0:x_max, y=probs2, type="o", lwd=2, col="tomato") points(x=0:x_max, y=probs3, type="o", lwd=2, col="green4") legend("topright", col=c("dodgerblue", "tomato", "green4"), lwd=3, legend=c("mu=0.5, sigma=0.5", "mu=5, sigma=0.5", "mu=1, sigma=2")) # Example 2 # Checking if the cumulative curves converge to 1 x_max <- 20 cumulative_probs1 <- pDMOLBE(q=0:x_max, mu=0.5, sigma=0.5) cumulative_probs2 <- pDMOLBE(q=0:x_max, mu=5, sigma=0.5) cumulative_probs3 <- pDMOLBE(q=0:x_max, mu=1, sigma=2) plot(x=0:x_max, y=cumulative_probs1, col="dodgerblue", type="o", las=1, ylim=c(0, 1), main="Cumulative probability for DMOLBE", xlab="X", ylab="Probability") points(x=0:x_max, y=cumulative_probs2, type="o", col="tomato") points(x=0:x_max, y=cumulative_probs3, type="o", col="green4") legend("bottomright", col=c("dodgerblue", "tomato", "green4"), lwd=3, legend=c("mu=0.5, sigma=0.5", "mu=5, sigma=0.5", "mu=1, sigma=2")) # Example 3 # Comparing the random generator output with # the theoretical probabilities x_max <- 15 probs1 <- dDMOLBE(x=0:x_max, mu=5, sigma=0.5) names(probs1) <- 0:x_max x <- rDMOLBE(n=1000, mu=5, sigma=0.5) probs2 <- prop.table(table(x)) cn <- union(names(probs1), names(probs2)) height <- rbind(probs1[cn], probs2[cn]) nombres <- cn mp <- barplot(height, beside = TRUE, names.arg = nombres, col=c('dodgerblue3','firebrick3'), las=1, xlab='X', ylab='Proportion') legend('topright', legend=c('Theoretical', 'Simulated'), bty='n', lwd=3, col=c('dodgerblue3','firebrick3'), lty=1) # Example 4 # Checking the quantile function mu <- 3 sigma <-3 p <- seq(from=0, to=1, by=0.01) qxx <- qDMOLBE(p=p, mu=mu, sigma=sigma, lower.tail=TRUE, log.p=FALSE) plot(p, qxx, type="s", lwd=2, col="green3", ylab="quantiles", main="Quantiles of DMOLBE(mu = 3, sigma = 3)")

References

\insertRef Aljohani2023DiscreteDists

See Also

DMOLBE .

Author(s)

Olga Usuga, olga.usuga@udea.edu.co

  • Maintainer: Freddy Hernandez-Barajas
  • License: MIT + file LICENSE
  • Last published: 2024-09-13