dHYPERPO2 function

The hyper-Poisson distribution (with mu as mean)

The hyper-Poisson distribution (with mu as mean)

These functions define the density, distribution function, quantile function and random generation for the hyper-Poisson in the second parameterization with parameters μ\mu (as mean) and σ\sigma as the dispersion parameter.

dHYPERPO2(x, mu = 1, sigma = 1, log = FALSE) pHYPERPO2(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rHYPERPO2(n, mu = 1, sigma = 1) qHYPERPO2(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

  • x, q: vector of (non-negative integer) quantiles.
  • mu: vector of positive values of this parameter.
  • sigma: vector of positive values of this parameter.
  • log, log.p: logical; if TRUE, probabilities p are given as log(p).
  • lower.tail: logical; if TRUE (default), probabilities are P[X<=x]P[X <= x], otherwise, P[X>x]P[X > x].
  • n: number of random values to return
  • p: vector of probabilities.

Returns

dHYPERPO2 gives the density, pHYPERPO2 gives the distribution function, qHYPERPO2 gives the quantile function, rHYPERPO2

generates random deviates.

Details

The hyper-Poisson distribution with parameters μ\mu and σ\sigma

has a support 0, 1, 2, ...

Note: in this implementation the parameter μ\mu is the mean of the distribution and σ\sigma corresponds to the dispersion parameter. If you fit a model with this parameterization, the time will increase because an internal procedure to convert μ\mu

to λ\lambda parameter.

Examples

# Example 1 # Plotting the mass function for different parameter values x_max <- 30 probs1 <- dHYPERPO2(x=0:x_max, sigma=0.01, mu=3) probs2 <- dHYPERPO2(x=0:x_max, sigma=0.50, mu=5) probs3 <- dHYPERPO2(x=0:x_max, sigma=1.00, mu=7) # To plot the first k values plot(x=0:x_max, y=probs1, type="o", lwd=2, col="dodgerblue", las=1, ylab="P(X=x)", xlab="X", main="Probability for hyper-Poisson", ylim=c(0, 0.30)) points(x=0:x_max, y=probs2, type="o", lwd=2, col="tomato") points(x=0:x_max, y=probs3, type="o", lwd=2, col="green4") legend("topright", col=c("dodgerblue", "tomato", "green4"), lwd=3, legend=c("sigma=0.01, mu=3", "sigma=0.50, mu=5", "sigma=1.00, mu=7")) # Example 2 # Checking if the cumulative curves converge to 1 x_max <- 15 cumulative_probs1 <- pHYPERPO2(q=0:x_max, mu=1, sigma=1.5) cumulative_probs2 <- pHYPERPO2(q=0:x_max, mu=3, sigma=1.5) cumulative_probs3 <- pHYPERPO2(q=0:x_max, mu=5, sigma=1.5) plot(x=0:x_max, y=cumulative_probs1, col="dodgerblue", type="o", las=1, ylim=c(0, 1), main="Cumulative probability for hyper-Poisson", xlab="X", ylab="Probability") points(x=0:x_max, y=cumulative_probs2, type="o", col="tomato") points(x=0:x_max, y=cumulative_probs3, type="o", col="green4") legend("bottomright", col=c("dodgerblue", "tomato", "green4"), lwd=3, legend=c("sigma=1.5, mu=1", "sigma=1.5, mu=3", "sigma=1.5, mu=5")) # Example 3 # Comparing the random generator output with # the theoretical probabilities x_max <- 15 probs1 <- dHYPERPO2(x=0:x_max, mu=3, sigma=1.1) names(probs1) <- 0:x_max x <- rHYPERPO2(n=1000, mu=3, sigma=1.1) probs2 <- prop.table(table(x)) cn <- union(names(probs1), names(probs2)) height <- rbind(probs1[cn], probs2[cn]) nombres <- cn mp <- barplot(height, beside = TRUE, names.arg = nombres, col=c('dodgerblue3','firebrick3'), las=1, xlab='X', ylab='Proportion') legend('topright', legend=c('Theoretical', 'Simulated'), bty='n', lwd=3, col=c('dodgerblue3','firebrick3'), lty=1) # Example 4 # Checking the quantile function mu <- 3 sigma <-3 p <- seq(from=0, to=1, by=0.01) qxx <- qHYPERPO2(p=p, mu=mu, sigma=sigma, lower.tail=TRUE, log.p=FALSE) plot(p, qxx, type="s", lwd=2, col="green3", ylab="quantiles", main="Quantiles of HP2(mu = sigma = 3)")

References

\insertRef saez2013hyperpoDiscreteDists

See Also

HYPERPO2 , HYPERPO .

Author(s)

Freddy Hernandez, fhernanb@unal.edu.co

  • Maintainer: Freddy Hernandez-Barajas
  • License: MIT + file LICENSE
  • Last published: 2024-09-13