These functions define the density, distribution function, quantile function and random generation for the Discrete Poisson XLindley distribution with parameter μ.
dPOISXL(x, mu =0.3, log =FALSE)pPOISXL(q, mu =0.3, lower.tail =TRUE, log.p =FALSE)qPOISXL(p, mu =0.3, lower.tail =TRUE, log.p =FALSE)rPOISXL(n, mu =0.3)
Arguments
x, q: vector of (non-negative integer) quantiles.
mu: vector of the mu parameter.
log, log.p: logical; if TRUE, probabilities p are given as log(p).
lower.tail: logical; if TRUE (default), probabilities are P[X<=x], otherwise, P[X > x].
p: vector of probabilities.
n: number of random values to return
Returns
dPOISXL gives the density, pPOISXL gives the distribution function, qPOISXL gives the quantile function, rPOISXL
generates random deviates.
Details
The Discrete Poisson XLindley distribution with parameters μ has a support 0, 1, 2, ... and mass function given by
f(x∣μ)=(1+μ)4+xμ2(x+μ2+3(1+μ)); with μ>0.
Note: in this implementation we changed the original parameters α for μ, we did it to implement this distribution within gamlss framework.
Examples
# Example 1# Plotting the mass function for different parameter valuesx_max <-20probs1 <- dPOISXL(x=0:x_max, mu=0.2)probs2 <- dPOISXL(x=0:x_max, mu=0.5)probs3 <- dPOISXL(x=0:x_max, mu=1.0)# To plot the first k valuesplot(x=0:x_max, y=probs1, type="o", lwd=2, col="dodgerblue", las=1, ylab="P(X=x)", xlab="X", main="Probability for Poisson XLindley", ylim=c(0,0.50))points(x=0:x_max, y=probs2, type="o", lwd=2, col="tomato")points(x=0:x_max, y=probs3, type="o", lwd=2, col="green4")legend("topright", col=c("dodgerblue","tomato","green4"), lwd=3, legend=c("mu=0.2","mu=0.5","mu=1.0"))# Example 2# Checking if the cumulative curves converge to 1x_max <-20plot_discrete_cdf(x=0:x_max, fx=dPOISXL(x=0:x_max, mu=0.2), col="dodgerblue", main="CDF for Poisson XLindley with mu=0.2")plot_discrete_cdf(x=0:x_max, fx=dPOISXL(x=0:x_max, mu=0.5), col="tomato", main="CDF for Poisson XLindley with mu=0.5")plot_discrete_cdf(x=0:x_max, fx=dPOISXL(x=0:x_max, mu=1.0), col="green4", main="CDF for Poisson XLindley with mu=1.0")# Example 3# Comparing the random generator output with# the theoretical probabilitiesx_max <-15probs1 <- dPOISXL(x=0:x_max, mu=0.3)names(probs1)<-0:x_max
x <- rPOISXL(n=3000, mu=0.3)probs2 <- prop.table(table(x))cn <- union(names(probs1), names(probs2))height <- rbind(probs1[cn], probs2[cn])nombres <- cn
mp <- barplot(height, beside =TRUE, names.arg = nombres, col=c("dodgerblue3","firebrick3"), las=1, xlab="X", ylab="Proportion")legend("topright", legend=c("Theoretical","Simulated"), bty="n", lwd=3, col=c("dodgerblue3","firebrick3"), lty=1)# Example 4# Checking the quantile functionmu <-0.3p <- seq(from=0, to=1, by =0.01)qxx <- qPOISXL(p, mu, lower.tail =TRUE, log.p =FALSE)plot(p, qxx, type="s", lwd=2, col="green3", ylab="quantiles", main="Quantiles for Poisson XLindley mu=0.3")