dPOISXL function

The Discrete Poisson XLindley

The Discrete Poisson XLindley

These functions define the density, distribution function, quantile function and random generation for the Discrete Poisson XLindley distribution with parameter μ\mu.

dPOISXL(x, mu = 0.3, log = FALSE) pPOISXL(q, mu = 0.3, lower.tail = TRUE, log.p = FALSE) qPOISXL(p, mu = 0.3, lower.tail = TRUE, log.p = FALSE) rPOISXL(n, mu = 0.3)

Arguments

  • x, q: vector of (non-negative integer) quantiles.
  • mu: vector of the mu parameter.
  • log, log.p: logical; if TRUE, probabilities p are given as log(p).
  • lower.tail: logical; if TRUE (default), probabilities are P[X<=x]P[X <= x], otherwise, P[X > x].
  • p: vector of probabilities.
  • n: number of random values to return

Returns

dPOISXL gives the density, pPOISXL gives the distribution function, qPOISXL gives the quantile function, rPOISXL

generates random deviates.

Details

The Discrete Poisson XLindley distribution with parameters μ\mu has a support 0, 1, 2, ... and mass function given by

f(xμ)=μ2(x+μ2+3(1+μ))(1+μ)4+xf(x | \mu) = \frac{\mu^2(x+\mu^2+3(1+\mu))}{(1+\mu)^{4+x}}; with μ>0\mu>0.

Note: in this implementation we changed the original parameters α\alpha for μ\mu, we did it to implement this distribution within gamlss framework.

Examples

# Example 1 # Plotting the mass function for different parameter values x_max <- 20 probs1 <- dPOISXL(x=0:x_max, mu=0.2) probs2 <- dPOISXL(x=0:x_max, mu=0.5) probs3 <- dPOISXL(x=0:x_max, mu=1.0) # To plot the first k values plot(x=0:x_max, y=probs1, type="o", lwd=2, col="dodgerblue", las=1, ylab="P(X=x)", xlab="X", main="Probability for Poisson XLindley", ylim=c(0, 0.50)) points(x=0:x_max, y=probs2, type="o", lwd=2, col="tomato") points(x=0:x_max, y=probs3, type="o", lwd=2, col="green4") legend("topright", col=c("dodgerblue", "tomato", "green4"), lwd=3, legend=c("mu=0.2", "mu=0.5", "mu=1.0")) # Example 2 # Checking if the cumulative curves converge to 1 x_max <- 20 plot_discrete_cdf(x=0:x_max, fx=dPOISXL(x=0:x_max, mu=0.2), col="dodgerblue", main="CDF for Poisson XLindley with mu=0.2") plot_discrete_cdf(x=0:x_max, fx=dPOISXL(x=0:x_max, mu=0.5), col="tomato", main="CDF for Poisson XLindley with mu=0.5") plot_discrete_cdf(x=0:x_max, fx=dPOISXL(x=0:x_max, mu=1.0), col="green4", main="CDF for Poisson XLindley with mu=1.0") # Example 3 # Comparing the random generator output with # the theoretical probabilities x_max <- 15 probs1 <- dPOISXL(x=0:x_max, mu=0.3) names(probs1) <- 0:x_max x <- rPOISXL(n=3000, mu=0.3) probs2 <- prop.table(table(x)) cn <- union(names(probs1), names(probs2)) height <- rbind(probs1[cn], probs2[cn]) nombres <- cn mp <- barplot(height, beside = TRUE, names.arg = nombres, col=c("dodgerblue3","firebrick3"), las=1, xlab="X", ylab="Proportion") legend("topright", legend=c("Theoretical", "Simulated"), bty="n", lwd=3, col=c("dodgerblue3","firebrick3"), lty=1) # Example 4 # Checking the quantile function mu <- 0.3 p <- seq(from=0, to=1, by = 0.01) qxx <- qPOISXL(p, mu, lower.tail = TRUE, log.p = FALSE) plot(p, qxx, type="s", lwd=2, col="green3", ylab="quantiles", main="Quantiles for Poisson XLindley mu=0.3")

References

\insertRef ahsan2022DiscreteDists

See Also

POISXL .

Author(s)

Mariana Blandon Mejia, mblandonm@unal.edu.co

  • Maintainer: Freddy Hernandez-Barajas
  • License: MIT + file LICENSE
  • Last published: 2024-09-13