Heuristic method for the estimation of parameters of the discrete inverse Weibull
heuristic(x, beta1=1, z =0.1, r =0.1, Leps =0.01)
Arguments
x: a vector of sample values
beta1: launch value of the β parameter
z: initial value of width
r: initial value of rate
Leps: tolerance error for the likelihood function
Returns
a list containig the two estimates of q and β
Details
For a detailed description of the method, have a look at the reference
See Also
estdiweibull
Examples
n<-50q<-0.25beta<-1.5x<-rdiweibull(n, q, beta)# estimates using the heuristic algorithmpar0<-heuristic(x)par0
# change the default values of some working parameters...par1<-heuristic(x, beta1=2)par1
par2<-heuristic(x, z=0.5)par2
par3<-heuristic(x, r=0.2)par3
par4<-heuristic(x, Leps=0.1)par4
# ...there should be just light differences among the estimates...# ... and among the corresponding values of the loglikelihood functionsloglikediw(x, par0[1], par0[2])loglikediw(x, par1[1], par1[2])loglikediw(x, par2[1], par2[2])loglikediw(x, par3[1], par3[2])loglikediw(x, par4[1], par4[2])
References
Jazi M.A., Lai C.-D., Alamatsaz M.H. (2010) A discrete inverse Weibull distribution and estimation of its parameters, Statistical Methodology, 7: 121-132
Drapella A. (1993) Complementary Weibull distribution: unknown or just forgotten, Quality Reliability Engineering International 9: 383-385