heuristic function

Heuristic method of estimation

Heuristic method of estimation

Heuristic method for the estimation of parameters of the discrete inverse Weibull

heuristic(x, beta1=1, z = 0.1, r = 0.1, Leps = 0.01)

Arguments

  • x: a vector of sample values
  • beta1: launch value of the β\beta parameter
  • z: initial value of width
  • r: initial value of rate
  • Leps: tolerance error for the likelihood function

Returns

a list containig the two estimates of qq and β\beta

Details

For a detailed description of the method, have a look at the reference

See Also

estdiweibull

Examples

n<-50 q<-0.25 beta<-1.5 x<-rdiweibull(n, q, beta) # estimates using the heuristic algorithm par0<-heuristic(x) par0 # change the default values of some working parameters... par1<-heuristic(x, beta1=2) par1 par2<-heuristic(x, z=0.5) par2 par3<-heuristic(x, r=0.2) par3 par4<-heuristic(x, Leps=0.1) par4 # ...there should be just light differences among the estimates... # ... and among the corresponding values of the loglikelihood functions loglikediw(x, par0[1], par0[2]) loglikediw(x, par1[1], par1[2]) loglikediw(x, par2[1], par2[2]) loglikediw(x, par3[1], par3[2]) loglikediw(x, par4[1], par4[2])

References

Jazi M.A., Lai C.-D., Alamatsaz M.H. (2010) A discrete inverse Weibull distribution and estimation of its parameters, Statistical Methodology, 7: 121-132

Drapella A. (1993) Complementary Weibull distribution: unknown or just forgotten, Quality Reliability Engineering International 9: 383-385

  • Maintainer: Alessandro Barbiero
  • License: GPL
  • Last published: 2016-05-01

Useful links