Calculates moments and absolute moments about a given location for any given distribution.
momIntegrated(densFn ="ghyp", param =NULL, order, about =0, absolute =FALSE,...)
Arguments
densFn: Character. The name of the density function whose moments are to be calculated. See Details .
param: Numeric. A vector giving the parameter values for the distribution specified by densFn. If no param values are specified, then the default parameter values of the distribution are used instead.
order: Numeric. The order of the moment or absolute moment to be calculated.
about: Numeric. The point about which the moment is to be calculated.
absolute: Logical. Whether absolute moments or ordinary moments are to be calculated. Default is FALSE.
...: Passes arguments to integrate. In particular, the parameters of the distribution.
Details
Denote the density function by f. Then if order=k and about=a, momIntegrated calculates
∫−∞∞(x−a)kf(x)dx
when absolute = FALSE and
∫−∞∞∣x−a∣kf(x)dx
when absolute = TRUE.
The name of the density function must be supplied as the characters of the root for that density (e.g. norm, ghyp).
When densFn="ghyp", densFn="hyperb", densFn="gig" or densFn = "vg", the relevant package must be loaded or an error will result.
When densFn="invgamma" or "inverse gamma" the density used is the density of the inverse gamma distribution given by
f(x)=xΓ(α)uαe−u,
for x>0, alpha>0 and theta>0. The parameter vector param = c(shape, rate) where shape=alpha and rate=1/theta. The default value for param is c(-1, 1).
Returns
The value of the integral as specified in Details .
require(GeneralizedHyperbolic)### Calculate the mean of a generalized hyperbolic distribution### Compare the use of integration and the formula for the meanm1 <- momIntegrated("ghyp", param = c(0,1,3,1,1/2), order =1, about =0)m1
ghypMean(param = c(0,1,3,1,1/2))### The first moment about the mean should be zeromomIntegrated("ghyp", order =1, param = c(0,1,3,1,1/2), about = m1)### The variance can be calculated from the raw momentsm2 <- momIntegrated("ghyp", order =2, param = c(0,1,3,1,1/2), about =0)m2
m2 - m1^2### Compare with direct calculation using integrationmomIntegrated("ghyp", order =2, param = c(0,1,3,1,1/2), about = m1)momIntegrated("ghyp", param = c(0,1,3,1,1/2), order =2, about = m1)### Compare with use of the formula for the varianceghypVar(param = c(0,1,3,1,1/2))