momIntegrated function

Moments Using Integration

Moments Using Integration

Calculates moments and absolute moments about a given location for any given distribution.

momIntegrated(densFn = "ghyp", param = NULL, order, about = 0, absolute = FALSE, ...)

Arguments

  • densFn: Character. The name of the density function whose moments are to be calculated. See Details .
  • param: Numeric. A vector giving the parameter values for the distribution specified by densFn. If no param values are specified, then the default parameter values of the distribution are used instead.
  • order: Numeric. The order of the moment or absolute moment to be calculated.
  • about: Numeric. The point about which the moment is to be calculated.
  • absolute: Logical. Whether absolute moments or ordinary moments are to be calculated. Default is FALSE.
  • ...: Passes arguments to integrate. In particular, the parameters of the distribution.

Details

Denote the density function by ff. Then if order=k=k and about=a=a, momIntegrated calculates

(xa)kf(x)dx \int_{-\infty}^\infty (x - a)^k f(x) dx%integral_{-infinity}^infinity (x - a)^k f(x) dx

when absolute = FALSE and

xakf(x)dx \int_{-\infty}^\infty |x - a|^k f(x) dx%integral_{-infinity}^infinity |x - a|^k f(x) dx

when absolute = TRUE.

The name of the density function must be supplied as the characters of the root for that density (e.g. norm, ghyp).

When densFn="ghyp", densFn="hyperb", densFn="gig" or densFn = "vg", the relevant package must be loaded or an error will result.

When densFn="invgamma" or "inverse gamma" the density used is the density of the inverse gamma distribution given by

f(x)=uαeuxΓ(α), f(x) = \frac{u^\alpha e^{-u}}{x \Gamma(\alpha)}, %\quad u = \theta/x%f(x) = u^alpha exp(-u)/(x Gamma(alpha)), u = theta/x

for x>0x > 0, alpha>0alpha > 0 and theta>0theta > 0. The parameter vector param = c(shape, rate) where shape =alpha=alpha and rate=1/theta=1/theta. The default value for param is c(-1, 1).

Returns

The value of the integral as specified in Details .

Author(s)

David Scott d.scott@auckland.ac.nz , Christine Yang Dong c.dong@auckland.ac.nz , Xinxing Li xli053@aucklanduni.ac.nz

See Also

dghyp, dhyperb, dgamma, dgig, VarianceGamma

Examples

require(GeneralizedHyperbolic) ### Calculate the mean of a generalized hyperbolic distribution ### Compare the use of integration and the formula for the mean m1 <- momIntegrated("ghyp", param = c(0, 1, 3, 1, 1 / 2), order = 1, about = 0) m1 ghypMean(param = c(0, 1, 3, 1, 1 / 2)) ### The first moment about the mean should be zero momIntegrated("ghyp", order = 1, param = c(0, 1, 3, 1, 1 / 2), about = m1) ### The variance can be calculated from the raw moments m2 <- momIntegrated("ghyp", order = 2, param = c(0, 1, 3, 1, 1 / 2), about = 0) m2 m2 - m1^2 ### Compare with direct calculation using integration momIntegrated("ghyp", order = 2, param = c(0, 1, 3, 1, 1 / 2), about = m1) momIntegrated("ghyp", param = c(0, 1, 3, 1, 1 / 2), order = 2, about = m1) ### Compare with use of the formula for the variance ghypVar(param = c(0, 1, 3, 1, 1 / 2))
  • Maintainer: David Scott
  • License: GPL (>= 2)
  • Last published: 2025-03-29

Useful links