AdjustedNormalVaRHotspots function

Hotspots for VaR adjusted by Cornish-Fisher correction

Hotspots for VaR adjusted by Cornish-Fisher correction

Estimates the VaR hotspots (or vector of incremental VaRs) for a portfolio with portfolio return adjusted for non-normality by Cornish-Fisher corerction, for specified confidence level and holding period.

AdjustedNormalVaRHotspots(vc.matrix, mu, skew, kurtosis, positions, cl, hp)

Arguments

  • vc.matrix: Variance covariance matrix for returns
  • mu: Vector of expected position returns
  • skew: Return skew
  • kurtosis: Return kurtosis
  • positions: Vector of positions
  • cl: Confidence level and is scalar
  • hp: Holding period and is scalar

Examples

# Hotspots for ES for randomly generated portfolio vc.matrix <- matrix(rnorm(16),4,4) mu <- rnorm(4) skew <- .5 kurtosis <- 1.2 positions <- c(5,2,6,10) cl <- .95 hp <- 280 AdjustedNormalVaRHotspots(vc.matrix, mu, skew, kurtosis, positions, cl, hp)

Author(s)

Dinesh Acharya

References

Dowd, K. Measuring Market Risk, Wiley, 2007.

  • Maintainer: Dinesh Acharya
  • License: GPL
  • Last published: 2016-03-11

Useful links

    Downloads (last 30 days):