AdjustedVarianceCovarianceVaR function

Cornish-Fisher adjusted variance-covariance VaR

Cornish-Fisher adjusted variance-covariance VaR

Estimates the variance-covariance VaR of a multi-asset portfolio using the Cornish-Fisher adjustment for portfolio-return non-normality, for specified confidence level and holding period.

AdjustedVarianceCovarianceVaR(vc.matrix, mu, skew, kurtosis, positions, cl, hp)

Arguments

  • vc.matrix: Assumed variance covariance matrix for returns
  • mu: Vector of expected position returns
  • skew: Portfolio return skewness
  • kurtosis: Portfolio return kurtosis
  • positions: Vector of positions
  • cl: Confidence level and is scalar or vector
  • hp: Holding period and is scalar or vector

Examples

# Variance-covariance for randomly generated portfolio vc.matrix <- matrix(rnorm(16),4,4) mu <- rnorm(4) skew <- .5 kurtosis <- 1.2 positions <- c(5,2,6,10) cl <- .95 hp <- 280 AdjustedVarianceCovarianceVaR(vc.matrix, mu, skew, kurtosis, positions, cl, hp)

Author(s)

Dinesh Acharya

References

Dowd, K. Measuring Market Risk, Wiley, 2007.

  • Maintainer: Dinesh Acharya
  • License: GPL
  • Last published: 2016-03-11

Useful links