BlackScholesPutESSim function

ES of Black-Scholes put using Monte Carlo Simulation

ES of Black-Scholes put using Monte Carlo Simulation

Estimates ES of Black-Scholes Put Option using Monte Carlo simulation

BlackScholesPutESSim(amountInvested, stockPrice, strike, r, mu, sigma, maturity, numberTrials, cl, hp)

Arguments

  • amountInvested: Total amount paid for the Put Option and is positive (negative) if the option position is long (short)
  • stockPrice: Stock price of underlying stock
  • strike: Strike price of the option
  • r: Risk-free rate
  • mu: Expected rate of return on the underlying asset and is in annualised term
  • sigma: Volatility of the underlying stock and is in annualised term
  • maturity: The term to maturity of the option in days
  • numberTrials: The number of interations in the Monte Carlo simulation exercise
  • cl: Confidence level for which ES is computed and is scalar
  • hp: Holding period of the option in days and is scalar

Returns

ES

Examples

# Market Risk of American Put with given parameters. BlackScholesPutESSim(0.20, 27.2, 25, .03, .12, .05, 60, 1000, .95, 30)

Author(s)

Dinesh Acharya

References

Dowd, Kevin. Measuring Market Risk, Wiley, 2007.

Lyuu, Yuh-Dauh. Financial Engineering & Computation: Principles, Mathematics, Algorithms, Cambridge University Press, 2002.

  • Maintainer: Dinesh Acharya
  • License: GPL
  • Last published: 2016-03-11

Useful links