GaussianCopulaVaR function

Bivariate Gaussian Copule VaR

Bivariate Gaussian Copule VaR

Derives VaR using bivariate Gaussian copula with specified inputs for normal marginals.

GaussianCopulaVaR(mu1, mu2, sigma1, sigma2, rho, number.steps.in.copula, cl)

Arguments

  • mu1: Mean of Profit/Loss on first position
  • mu2: Mean of Profit/Loss on second position
  • sigma1: Standard Deviation of Profit/Loss on first position
  • sigma2: Standard Deviation of Profit/Loss on second position
  • rho: Correlation between Profit/Loss on two positions
  • number.steps.in.copula: Number of steps used in the copula approximation ( approximation being needed because Gaussian copula lacks a closed form solution)
  • cl: VaR confidece level

Returns

Copula based VaR

Examples

# VaR using bivariate Gaussian for X and Y with given parameters: GaussianCopulaVaR(2.3, 4.1, 1.2, 1.5, .6, 10, .95)

Author(s)

Dinesh Acharya

References

Dowd, K. Measuring Market Risk, Wiley, 2007.

Dowd, K. and Fackler, P. Estimating VaR with copulas. Financial Engineering News, 2004.

  • Maintainer: Dinesh Acharya
  • License: GPL
  • Last published: 2016-03-11

Useful links