KuiperTestStat function

Plots cummulative density for Kuiper test and computes confidence interval for Kuiper test stat.

Plots cummulative density for Kuiper test and computes confidence interval for Kuiper test stat.

Kuiper test statistic is a non parametric test for distribution equality and is closely related to KS test. Formally, the Kuiper test statistic is : [REMOVE_ME]D=maxi{F(Xi)F(xi)^+maxi{F^(Xi)F(Xi)}[REMOVEME2] D*=\max_i\{F(X_i)-\hat{F(x_i)}+\max_i\{\hat{F}(X_i)-F(X_i)\} [REMOVE_ME_2]

KuiperTestStat(number.trials, sample.size, confidence.interval)

Arguments

  • number.trials: Number of trials
  • sample.size: Sizes of the trial samples
  • confidence.interval: Confidence interval expressed as a fraction of 1

Returns

Confidence Interval for KS test stat

Description

Kuiper test statistic is a non parametric test for distribution equality and is closely related to KS test. Formally, the Kuiper test statistic is :

D=maxi{F(Xi)F(xi)^+maxi{F^(Xi)F(Xi)} D*=\max_i\{F(X_i)-\hat{F(x_i)}+\max_i\{\hat{F}(X_i)-F(X_i)\}

Examples

# Plots the cdf for Kuiper Test statistic and returns Kuiper confidence # interval for 100 trials with 1000 sample size and 0.95 confidence # interval. KuiperTestStat(100, 1000, 0.95)

Author(s)

Dinesh Acharya

References

Dowd, K. Measuring Market Risk, Wiley, 2007.

  • Maintainer: Dinesh Acharya
  • License: GPL
  • Last published: 2016-03-11

Useful links