LogNormalESDFPerc function

Percentiles of ES distribution function for normally distributed geometric returns

Percentiles of ES distribution function for normally distributed geometric returns

Estimates the percentiles of ES distribution for normally distributed geometric returns, for specified confidence level and holding period using the theory of order statistics.

LogNormalESDFPerc(...)

Arguments

  • ...: The input arguments contain either return data or else mean and standard deviation data. Accordingly, number of input arguments is either 5 or 7. In case there 5 input arguments, the mean, standard deviation and number of samples is computed from return data. See examples for details.

    returns Vector of daily geometric return data

    mu Mean of daily geometric return data

    sigma Standard deviation of daily geometric return data

    n Sample size

    investment Size of investment

    perc Desired percentile

    cl ES confidence level and must be a scalar

    hp ES holding period and must be a a scalar

Returns

Percentiles of ES distribution function

Examples

# Estimates Percentiles of ES distribution data <- runif(5, min = 0, max = .2) LogNormalESDFPerc(returns = data, investment = 5, perc = .7, cl = .95, hp = 60) # Estimates Percentiles given mean, standard deviation and number of sambles of return data LogNormalESDFPerc(mu = .012, sigma = .03, n= 10, investment = 5, perc = .8, cl = .99, hp = 40)

Author(s)

Dinesh Acharya

References

Dowd, K. Measuring Market Risk, Wiley, 2007.

  • Maintainer: Dinesh Acharya
  • License: GPL
  • Last published: 2016-03-11

Useful links