NormalVaRDFPerc function

Percentiles of VaR distribution function for normally distributed P/L

Percentiles of VaR distribution function for normally distributed P/L

Estimates the percentile of VaR distribution function for normally distributed P/L, using the theory of order statistics.

NormalVaRDFPerc(...)

Arguments

  • ...: The input arguments contain either return data or else mean and standard deviation data. Accordingly, number of input arguments is either 4 or 6. In case there 4 input arguments, the mean, standard deviation and number of observations of data are computed from returns data. See examples for details.

    returns Vector of daily geometric return data

    mu Mean of daily geometric return data sigma Standard deviation of daily geometric return data

    n Sample size

    perc Desired percentile

    cl VaR confidence level and must be a scalar

    hp VaR holding period and must be a a scalar

Returns

Percentiles of VaR distribution function and is scalar

Examples

# Estimates Percentiles of VaR distribution data <- runif(5, min = 0, max = .2) NormalVaRDFPerc(returns = data, perc = .7, cl = .95, hp = 60) # Estimates Percentiles of VaR distribution NormalVaRDFPerc(mu = .012, sigma = .03, n= 10, perc = .8, cl = .99, hp = 40)

Author(s)

Dinesh Acharya

References

Dowd, K. Measuring Market Risk, Wiley, 2007.

  • Maintainer: Dinesh Acharya
  • License: GPL
  • Last published: 2016-03-11

Useful links