VarianceCovarianceVaR function

Variance-covariance VaR for normally distributed returns

Variance-covariance VaR for normally distributed returns

Estimates the variance-covariance VaR of a portfolio assuming individual asset returns are normally distributed, for specified confidence level and holding period.

VarianceCovarianceVaR(vc.matrix, mu, positions, cl, hp)

Arguments

  • vc.matrix: Assumed variance covariance matrix for returns
  • mu: Vector of expected position returns
  • positions: Vector of positions
  • cl: Confidence level and is scalar or vector
  • hp: Holding period and is scalar or vector

Examples

# Variance-covariance VaR for randomly generated portfolio vc.matrix <- matrix(rnorm(16),4,4) mu <- rnorm(4) positions <- c(5,2,6,10) cl <- .95 hp <- 280 VarianceCovarianceVaR(vc.matrix, mu, positions, cl, hp)

Author(s)

Dinesh Acharya

References

Dowd, K. Measuring Market Risk, Wiley, 2007.

See Also

AdjustedVarianceCovarianceVaR

  • Maintainer: Dinesh Acharya
  • License: GPL
  • Last published: 2016-03-11

Useful links