Monitor Longitudinal Data for Survival Outcomes
monitor_long_surv( data_array_new, time_matrix_new, nobs_new, pattern, method, parameter = 0.5, CL = Inf )
data_array_new
: observed data arranged in a numeric array format.
data_array_new[i,j,k]
is the jth observation of the kth dimension of the ith subject.
time_matrix_new
: observation times arranged in a numeric matrix format.
time_matrix_new[i,j]
is the jth observation time of the ith subject.
data_array_new[i,j,]
is observed at time_matrix[i,j]
.
nobs_new
: number of observations arranged as an integer vector.
nobs_new[i]
is the number of observations for the ith subject.
pattern
: the estimated longitudinal and survival pattern from estimate_pattern_long_surv
.
method
: a character value specifying the smoothing method
If method="risk"
, apply the risk monitoring method by You and Qiu (2020).
parameter
: a numeric value.
The weighting parameter in the modified EWMA charts.
CL
: a numeric value specifying the control limit
a list that stores the result.
$chart: charting statistics arranged in a matrix.
$standardized_values: standardized values arranged in a matrix.
data("data_example_long_surv") result_pattern<-estimate_pattern_long_surv( data_array=data_example_long_surv$data_array_IC, time_matrix=data_example_long_surv$time_matrix_IC, nobs=data_example_long_surv$nobs_IC, starttime=data_example_long_surv$starttime_IC, survtime=data_example_long_surv$survtime_IC, survevent=data_example_long_surv$survevent_IC, design_interval=data_example_long_surv$design_interval, n_time_units=data_example_long_surv$n_time_units, estimation_method="risk", smoothing_method="local linear", bw_beta=0.05, bw_mean=0.1, bw_var=0.1) result_monitoring<-monitor_long_surv( data_array_new=data_example_long_surv$data_array_OC, time_matrix_new=data_example_long_surv$time_matrix_OC, nobs_new=data_example_long_surv$nobs_OC, pattern=result_pattern, method="risk", parameter=0.5)
You, L. and Qiu, P. (2020). An effective method for online disease risk monitoring. Technometrics, 62(2):249-264.
Useful links