monitor_long_surv function

Monitor Longitudinal Data for Survival Outcomes

Monitor Longitudinal Data for Survival Outcomes

monitor_long_surv( data_array_new, time_matrix_new, nobs_new, pattern, method, parameter = 0.5, CL = Inf )

Arguments

  • data_array_new: observed data arranged in a numeric array format.

    data_array_new[i,j,k] is the jth observation of the kth dimension of the ith subject.

  • time_matrix_new: observation times arranged in a numeric matrix format.

    time_matrix_new[i,j] is the jth observation time of the ith subject.

    data_array_new[i,j,] is observed at time_matrix[i,j].

  • nobs_new: number of observations arranged as an integer vector.

    nobs_new[i] is the number of observations for the ith subject.

  • pattern: the estimated longitudinal and survival pattern from estimate_pattern_long_surv.

  • method: a character value specifying the smoothing method

    If method="risk", apply the risk monitoring method by You and Qiu (2020).

  • parameter: a numeric value.

    The weighting parameter in the modified EWMA charts.

  • CL: a numeric value specifying the control limit

Returns

a list that stores the result.

  • $chart: charting statistics arranged in a matrix.

  • $standardized_values: standardized values arranged in a matrix.

Examples

data("data_example_long_surv") result_pattern<-estimate_pattern_long_surv( data_array=data_example_long_surv$data_array_IC, time_matrix=data_example_long_surv$time_matrix_IC, nobs=data_example_long_surv$nobs_IC, starttime=data_example_long_surv$starttime_IC, survtime=data_example_long_surv$survtime_IC, survevent=data_example_long_surv$survevent_IC, design_interval=data_example_long_surv$design_interval, n_time_units=data_example_long_surv$n_time_units, estimation_method="risk", smoothing_method="local linear", bw_beta=0.05, bw_mean=0.1, bw_var=0.1) result_monitoring<-monitor_long_surv( data_array_new=data_example_long_surv$data_array_OC, time_matrix_new=data_example_long_surv$time_matrix_OC, nobs_new=data_example_long_surv$nobs_OC, pattern=result_pattern, method="risk", parameter=0.5)

References

You, L. and Qiu, P. (2020). An effective method for online disease risk monitoring. Technometrics, 62(2):249-264.

  • Maintainer: Lu You
  • License: GPL-2 | GPL-3
  • Last published: 2022-07-16

Useful links