E2E0.1.0 package

Ensemble Learning Framework for Diagnostic and Prognostic Modeling

apply_dia

Apply a Trained Model to New Data

apply_pro

Apply a Trained Prognostic Model to New Data

bagging_dia

Train a Bagging Diagnostic Model

bagging_pro

Train a Bagging Prognostic Model

calculate_metrics_at_threshold_dia

Calculate Classification Metrics at a Specific Threshold

dt_dia

Train a Decision Tree Model for Classification

en_dia

Train an Elastic Net (L1 and L2 Regularized Logistic Regression) Model...

en_pro

Train an Elastic Net Cox Proportional Hazards Model

evaluate_model_dia

Evaluate Diagnostic Model Performance

evaluate_model_pro

Evaluate Prognostic Model Performance

evaluate_predictions_dia

Evaluate Predictions from a Data Frame

evaluate_predictions_pro

Evaluate Prognostic Predictions

figure_dia

Plot Diagnostic Model Evaluation Figures

figure_pro

Plot Prognostic Model Evaluation Figures

figure_shap

Generate and Plot SHAP Explanation Figures

find_optimal_threshold_dia

Find Optimal Probability Threshold

gbm_dia

Train a Gradient Boosting Machine (GBM) Model for Classification

gbm_pro

Train a Gradient Boosting Machine (GBM) for Survival Data

get_registered_models_dia

Get Registered Diagnostic Models

get_registered_models_pro

Get Registered Prognostic Models

imbalance_dia

Train an EasyEnsemble Model for Imbalanced Classification

initialize_modeling_system_dia

Initialize Diagnostic Modeling System

initialize_modeling_system_pro

Initialize Prognostic Modeling System

lasso_dia

Train a Lasso (L1 Regularized Logistic Regression) Model for Classific...

lasso_pro

Train a Lasso Cox Proportional Hazards Model

lda_dia

Train a Linear Discriminant Analysis (LDA) Model for Classification

load_and_prepare_data_dia

Load and Prepare Data for Diagnostic Models

load_and_prepare_data_pro

Load and Prepare Data for Prognostic Models

min_max_normalize

Min-Max Normalization

mlp_dia

Train a Multi-Layer Perceptron (Neural Network) Model for Classificati...

models_dia

Run Multiple Diagnostic Models

models_pro

Run Multiple Prognostic Models

nb_dia

Train a Naive Bayes Model for Classification

print_model_summary_dia

Print Diagnostic Model Summary

print_model_summary_pro

Print Prognostic Model Summary

qda_dia

Train a Quadratic Discriminant Analysis (QDA) Model for Classification

register_model_dia

Register a Diagnostic Model Function

register_model_pro

Register a Prognostic Model Function

rf_dia

Train a Random Forest Model for Classification

ridge_dia

Train a Ridge (L2 Regularized Logistic Regression) Model for Classific...

ridge_pro

Train a Ridge Cox Proportional Hazards Model

rsf_pro

Train a Random Survival Forest Model

stacking_dia

Train a Stacking Diagnostic Model

stacking_pro

Train a Stacking Prognostic Model

stepcox_pro

Train a Stepwise Cox Proportional Hazards Model

Surv

re-export Surv from survival

svm_dia

Train a Support Vector Machine (Linear Kernel) Model for Classificatio...

voting_dia

Train a Voting Ensemble Diagnostic Model

xb_dia

Train an XGBoost Tree Model for Classification

Provides a framework to build and evaluate diagnosis or prognosis models using stacking, voting, and bagging ensemble techniques with various base learners. The package also includes tools for visualization and interpretation of models. The development version of the package is available on 'GitHub' at <https://github.com/xiaojie0519/E2E>. The methods are based on the foundational work of Breiman (1996) <doi:10.1007/BF00058655> on bagging and Wolpert (1992) <doi:10.1016/S0893-6080(05)80023-1> on stacking.

  • Maintainer: Shanjie Luan
  • License: MIT + file LICENSE
  • Last published: 2025-09-04