pmdc measures conditional mean dependence of Y given X adjusting for the dependence on Z, where each contains one variable (univariate) or more variables (multivariate). Only the U-centering approach is applied.
pmdc(X, Y, Z)
Arguments
X: A vector, matrix or data frame, where rows represent samples, and columns represent variables.
Y: A vector, matrix or data frame, where rows represent samples, and columns represent variables.
Z: A vector, matrix or data frame, where rows represent samples, and columns represent variables.
Returns
pmdc returns the squared partial martingale difference correlation of Y given X adjusting for the dependence on Z.
Examples
# X, Y, Z are 10 x 2 matrices with 10 samples and 2 variablesX <- matrix(rnorm(10*2),10,2)Y <- matrix(rnorm(10*2),10,2)Z <- matrix(rnorm(10*2),10,2)pmdc(X, Y, Z)
References
Park, T., Shao, X., and Yao, S. (2015). Partial martingale difference correlation. Electronic Journal of Statistics, 9(1), 1492-1517. http://dx.doi.org/10.1214/15-EJS1047.